cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346085 Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 2, 0, 15, 3, 0, 6, 0, 96, 0, 0, 0, 24, 0, 455, 105, 40, 0, 0, 120, 0, 4320, 0, 0, 0, 0, 0, 720, 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040, 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320, 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2021

Keywords

Examples

			T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3).
T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432).
Triangle T(n,k) begins:
  1;
  0,       1;
  0,       1,      1;
  0,       4,      0,     2;
  0,      15,      3,     0,    6;
  0,      96,      0,     0,    0,    24;
  0,     455,    105,    40,    0,     0, 120;
  0,    4320,      0,     0,    0,     0,   0, 720;
  0,   29295,   4725,     0, 1260,     0,   0,   0, 5040;
  0,  300160,      0, 22400,    0,     0,   0,   0,    0, 40320;
  0, 2663199, 530145,     0,    0, 72576,   0,   0,    0,     0, 362880;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A079128.
Even bisection of column k=2 gives A346086.
Row sums give A000142.
T(2n,n) gives A110468(n-1) for n >= 1.

Programs

  • Maple
    b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!
          *b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!*
         b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]];
    T[n_] := CoefficientList[b[n, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A346066(n).
Sum_{prime p <= n} T(n,p) = A359951(n). - Alois P. Heinz, Jan 20 2023