A346085 Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 4, 0, 2, 0, 15, 3, 0, 6, 0, 96, 0, 0, 0, 24, 0, 455, 105, 40, 0, 0, 120, 0, 4320, 0, 0, 0, 0, 0, 720, 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040, 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320, 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880
Offset: 0
Examples
T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3). T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432). Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 4, 0, 2; 0, 15, 3, 0, 6; 0, 96, 0, 0, 0, 24; 0, 455, 105, 40, 0, 0, 120; 0, 4320, 0, 0, 0, 0, 0, 720; 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040; 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320; 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)! *b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)): seq(T(n), n=0..12);
-
Mathematica
b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!* b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]]; T[n_] := CoefficientList[b[n, 0], x]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A346066(n).
Sum_{prime p <= n} T(n,p) = A359951(n). - Alois P. Heinz, Jan 20 2023