cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346123 Numbers m such that no self-avoiding walk of length m + 1 on the honeycomb net fits into the smallest circle that can enclose a walk of length m.

Original entry on oeis.org

1, 2, 6, 7, 10, 12, 13, 14, 15, 16, 23, 24, 25, 27, 28, 30, 33, 36, 37, 38, 42, 43, 46, 53, 54, 55, 56, 58, 59, 62
Offset: 1

Views

Author

Hugo Pfoertner, Jul 05 2021

Keywords

Comments

The segments of the walk can make relative turns of +- 60 degrees. The walks may be open or closed.

Examples

			Illustration of initial terms:
                               %%% %%% %%%
                           %                %
                         %                    %
      %  %              %                     /%
   %        %          %      a(2) = 2       /  %
  %__________%        %                     /    %
  %   L = 1  %       %                     /      %
   %  D = 1 %        %   L = 2, D = 1.732 /       %
      %  %           %                   /        %
                      %                 / Pi/3   %
    a(1) = 1           %-------------- .  .  . .%
                        %                      %
                          %                  %
                              %%% %%% %%%
.
           %%% %%%% %%%                         %%% %%%% %%%
        %                %                   %                %
      %                    %               %                  \ %
     %                      %             %                    \ %
    %                        %           %                      \ %
   %                          %         %                        \ %
  %                            %       %                          \ %
  %.      L = 3, D = 2.00     .%       %.      L = 4, D = 2.00     .%
  % \                        / %       % \                        / %
   % \                      / %         % \                      / %
    % \                    / %           % \                    / %
     % \                  / %             % \                  / %
       % ---------------- %                 % ---------------- %
           %%% %%% %%%                          %%% %%% %%%
.
            %%% %%% %%%                          %%% %%% %%%
        % ______________ %                   % ______________ %
      %                  \ %               % /                \ %
     %                    \ %             % /                  \ %
    %                      \ %           % /                    \ %
   %                        \ %         % /       a(3) = 6       \ %
  %                          \ %       % /                        \ %
  %.      L = 5, D = 2.00     .%       %.      L = 6, D = 2.00     .%
  % \                        / %       % \                        / %
   % \                      / %         % \                      / %
    % \                    / %           % \                    / %
     % \                  / %             % \                  / %
       % ---------------- %                 % ---------------- %
           %%% %%%% %%%                         %%% %%%% %%%
.
The path of minimum diameter of length 7 requires an enclosing circle of D = 3.055, which is greater than the previous minimum diameter of D = 2.00 corresponding to a(3) = 6. No path of length 8 exists that fits into a circle of D = 3.055, thus a(4) = 7.
See link for illustrations of terms corresponding to diameters D <= 9.85.
		

Crossrefs

Cf. A346124-A346132 similar to this sequence with other sets of turning angles.

Formula

a(n+1) >= a(n) + 1 for n > 1; a(1) = 1.