A346123 Numbers m such that no self-avoiding walk of length m + 1 on the honeycomb net fits into the smallest circle that can enclose a walk of length m.
1, 2, 6, 7, 10, 12, 13, 14, 15, 16, 23, 24, 25, 27, 28, 30, 33, 36, 37, 38, 42, 43, 46, 53, 54, 55, 56, 58, 59, 62
Offset: 1
Examples
Illustration of initial terms: %%% %%% %%% % % % % % % % /% % % % a(2) = 2 / % %__________% % / % % L = 1 % % / % % D = 1 % % L = 2, D = 1.732 / % % % % / % % / Pi/3 % a(1) = 1 %-------------- . . . .% % % % % %%% %%% %%% . %%% %%%% %%% %%% %%%% %%% % % % % % % % \ % % % % \ % % % % \ % % % % \ % % % % \ % %. L = 3, D = 2.00 .% %. L = 4, D = 2.00 .% % \ / % % \ / % % \ / % % \ / % % \ / % % \ / % % \ / % % \ / % % ---------------- % % ---------------- % %%% %%% %%% %%% %%% %%% . %%% %%% %%% %%% %%% %%% % ______________ % % ______________ % % \ % % / \ % % \ % % / \ % % \ % % / \ % % \ % % / a(3) = 6 \ % % \ % % / \ % %. L = 5, D = 2.00 .% %. L = 6, D = 2.00 .% % \ / % % \ / % % \ / % % \ / % % \ / % % \ / % % \ / % % \ / % % ---------------- % % ---------------- % %%% %%%% %%% %%% %%%% %%% . The path of minimum diameter of length 7 requires an enclosing circle of D = 3.055, which is greater than the previous minimum diameter of D = 2.00 corresponding to a(3) = 6. No path of length 8 exists that fits into a circle of D = 3.055, thus a(4) = 7. See link for illustrations of terms corresponding to diameters D <= 9.85.
Links
- Hugo Pfoertner, Examples of paths of maximum length.
Crossrefs
Formula
a(n+1) >= a(n) + 1 for n > 1; a(1) = 1.
Comments