A346159 Number of n-dimensional representations of the group SU(3).
1, 1, 1, 3, 3, 3, 8, 8, 9, 17, 19, 21, 35, 39, 44, 68, 79, 87, 127, 145, 162, 228, 261, 291, 395, 451, 506, 665, 760, 850, 1096, 1254, 1400, 1765, 2016, 2249, 2800, 3188, 3556, 4356, 4953, 5522, 6688, 7581, 8447, 10123, 11464, 12747, 15141, 17094, 18997, 22395
Offset: 0
Keywords
Links
- Kathrin Bringmann and Johann Franke, An asymptotic formula for the number of n-dimensional representations of SU(3), arXiv:2107.03261 [math.RT], 2021.
- Dan Romik, On the number of n-dimensional representations of SU(3), the Bernoulli numbers, and the Witten zeta function, arXiv:1503.03776 [math.NT], 2015-2016.
Crossrefs
Cf. A107985 (as a rectangular array).
Programs
-
PARI
fij(lim) = my(imax = ceil((sqrt(8*lim+1)-1)/2), list=List()); for (i=1, imax, for (j=1, imax, if ((p=i*j*(i+j)/2) <= lim, listput(list, p)))); list; lista(nn) = my(v=fij(nn), x='x+O('x^nn), w=Vec(prod(k=1, #v, 1/(1-x^v[k])))); vector(nn, k, w[k]);
Formula
G.f.: Product_{j,k>=1} 1/(1-x^(j*k*(j+k)/2)).