A346208 Expansion of e.g.f.: exp(-3*x) / (2 - exp(x)).
1, -2, 6, -14, 54, -62, 966, 4786, 71574, 875938, 12810726, 202739986, 3511712694, 65856494338, 1330170266886, 28785391689586, 664456856787414, 16296345814039138, 423191833100881446, 11600198414334789586, 334710974532291679734, 10140603124807778534338
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..420
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(-3*x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024 -
Mathematica
nmax = 21; CoefficientList[Series[Exp[-3 x]/(2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]! Table[HurwitzLerchPhi[1/2, -n, -3]/2, {n, 0, 21}] a[n_] := a[n] = (-3)^n + Sum[Binomial[n, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
-
SageMath
def A346208_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp(-3*x)/(2-exp(x)) ).egf_to_ogf().list() A346208_list(40) # G. C. Greubel, Jun 11 2024
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * A000670(k).
a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * k! * A002620(k+2).
a(n) = Sum_{k>=0} (k - 3)^n / 2^(k+1).
a(n) = (-3)^n + Sum_{k=0..n-1} binomial(n,k) * a(k).
a(n) ~ n! / (16 * log(2)^(n+1)). - Vaclav Kotesovec, Aug 15 2021