A346286 Numbers that are the sum of seven fifth powers in exactly nine ways.
110276376, 124732805, 127808693, 130298618, 188116743, 202274051, 202686274, 203343582, 230909843, 233137574, 233549568, 234250752, 244250335, 251138524, 253480833, 254017026, 254380543, 265006057, 265072501, 273628068, 279536432, 279770326, 280361082
Offset: 1
Keywords
Examples
110276376 is a term because 110276376 = 1^5 + 3^5 + 5^5 + 7^5 + 17^5 + 23^5 + 40^5 = 5^5 + 10^5 + 16^5 + 16^5 + 19^5 + 20^5 + 40^5 = 1^5 + 8^5 + 14^5 + 16^5 + 21^5 + 27^5 + 39^5 = 7^5 + 8^5 + 11^5 + 14^5 + 16^5 + 33^5 + 37^5 = 4^5 + 7^5 + 8^5 + 13^5 + 26^5 + 31^5 + 37^5 = 1^5 + 5^5 + 6^5 + 20^5 + 28^5 + 29^5 + 37^5 = 3^5 + 3^5 + 7^5 + 18^5 + 27^5 + 32^5 + 36^5 = 6^5 + 12^5 + 18^5 + 25^5 + 30^5 + 31^5 + 34^5 = 6^5 + 10^5 + 20^5 + 27^5 + 27^5 + 33^5 + 33^5.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**5 for x in range(1, 1000)] for pos in cwr(power_terms, 7): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v == 9]) for x in range(len(rets)): print(rets[x])
Comments