cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346341 Numbers that are the sum of nine fifth powers in exactly six ways.

Original entry on oeis.org

926404, 936607, 952896, 985421, 993574, 993605, 993816, 1075779, 1123321, 1133344, 1134367, 1151406, 1160105, 1166111, 1177144, 1206514, 1209669, 1209847, 1215545, 1225630, 1251130, 1264929, 1265320, 1278611, 1414834, 1422367, 1422609, 1430384, 1431367
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345623 at term 30 because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.

Examples

			926404 is a term because 926404 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 2^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 4^5 + 4^5 + 7^5 + 11^5 + 12^5 + 12^5 + 12^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])