cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346344 Numbers that are the sum of nine fifth powers in exactly nine ways.

Original entry on oeis.org

1969221, 2596936, 3353186, 3378178, 3923426, 3981447, 4094027, 4096729, 4112329, 4114188, 4129465, 4137209, 4147736, 4170112, 4172994, 4254304, 4303773, 4410482, 4475846, 4477936, 4483379, 4485480, 4501441, 4543232, 4652011, 4691855, 4724015, 4733970, 4750241
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345626 at term 14 because 4157156 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 21^5 = 1^5 + 1^5 + 3^5 + 4^5 + 5^5 + 5^5 + 8^5 + 8^5 + 21^5 = 1^5 + 4^5 + 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 19^5 = 1^5 + 4^5 + 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 19^5 = 5^5 + 5^5 + 5^5 + 5^5 + 7^5 + 9^5 + 15^5 + 17^5 + 18^5 = 3^5 + 3^5 + 5^5 + 6^5 + 9^5 + 10^5 + 16^5 + 16^5 + 18^5 = 1^5 + 1^5 + 5^5 + 5^5 + 13^5 + 13^5 + 15^5 + 15^5 + 18^5 = 2^5 + 3^5 + 4^5 + 4^5 + 10^5 + 14^5 + 16^5 + 16^5 + 17^5 = 11^5 + 11^5 + 12^5 + 12^5 + 12^5 + 12^5 + 13^5 + 16^5 + 17^5 = 2^5 + 2^5 + 2^5 + 5^5 + 12^5 + 15^5 + 16^5 + 16^5 + 16^5.

Examples

			1969221 is a term because 1969221 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 + 16^5 = 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 12^5 + 12^5 + 13^5 + 16^5 = 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 12^5 + 12^5 + 13^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 14^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 14^5 + 15^5 = 1^5 + 4^5 + 5^5 + 8^5 + 9^5 + 13^5 + 13^5 + 13^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 + 14^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])