cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346353 Numbers that are the sum of ten fifth powers in exactly eight ways.

Original entry on oeis.org

944383, 953139, 953414, 985453, 1118585, 1151438, 1185375, 1198879, 1206546, 1209912, 1216569, 1217172, 1218912, 1223321, 1225398, 1234631, 1241834, 1251195, 1251406, 1252123, 1259685, 1265563, 1265594, 1267937, 1275375, 1281736, 1295418, 1297697, 1298088
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345640 at term 8 because 1192180 = 5^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 16^5 = 2^5 + 5^5 + 5^5 + 5^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 16^5 = 3^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 8^5 + 13^5 + 15^5 = 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 7^5 + 7^5 + 13^5 + 15^5 = 2^5 + 2^5 + 2^5 + 3^5 + 8^5 + 8^5 + 9^5 + 9^5 + 12^5 + 15^5 = 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 12^5 + 13^5 + 13^5 = 1^5 + 2^5 + 2^5 + 2^5 + 4^5 + 11^5 + 11^5 + 12^5 + 12^5 + 13^5 = 6^5 + 9^5 + 9^5 + 10^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5.

Examples

			944383 is a term because 944383 = 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 5^5 + 5^5 + 7^5 + 7^5 + 7^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])