cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346381 Triangle read by rows. T(n,k) is the number of invertible n X n matrices over GF(2) such that the dimension of the eigenspace corresponding to eigenvalue 1 is k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 0, 1, 2, 3, 1, 48, 98, 21, 1, 5824, 11640, 2590, 105, 1, 2887680, 5775424, 1283400, 52390, 465, 1, 5821595648, 11643190272, 2587376064, 105607080, 938742, 1953, 1, 47317927329792, 94635854692352, 21030189917184, 858375102144, 7630000488, 15879318, 8001, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jul 14 2021

Keywords

Examples

			Triangle begins:
        1;
        0,       1;
        2,       3,      1;
       48,      98,     21,      1;
     5824,   11640,   2590,    105,   1;
  2887680, 5775424, 1283400, 52390, 465, 1;
  ...
T(2,0) = 2 because {{0, 1}, {1, 1}}, {{1, 1}, {1, 0}} do not have 1 as an eigenvalue.
T(2,1) = 3 because {{0, 1}, {1, 0}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}} have 1 as an eigenvalue with corresponding eigenspace of dimension 1.
T(2,2) = 1 because {{1, 0}, {0, 1}} fixes the entire space.
		

Crossrefs

Cf. A002820 (column k=0), A002884 (row sums).

Programs

  • Mathematica
    nn = 15; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 =
    Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];
    g[u_, v_] := Total[Map[v^Length[#] u^Total[#]/aut[1, #] &,Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}] // Grid

Formula

For n>=1, Sum_{k=0..n} T(n,k)*2^k = 2*A002884(n). - Geoffrey Critzer, Jan 10 2025