cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002820 Number of n X n invertible binary matrices A such that A+I is invertible.

Original entry on oeis.org

1, 0, 2, 48, 5824, 2887680, 5821595648, 47317927329792, 1544457148312846336, 202039706313624586813440, 105823549214125066767168438272, 221819704567105547916502447159246848, 1860304261534304703934696550224148083769344, 62413833036707798343389591015829588620560344023040
Offset: 0

Views

Author

Keywords

Comments

Also number of linear orthomorphisms of GF(2)^n.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002884.
Column k=0 of A346201 and of A346381.

Programs

  • Maple
    # (Maple program based on Dai et al. from N. J. A. Sloane, Aug 10 2011)
    N:=proc(n,i) option remember; if i = 1 then 1 else (2^n-2^(i-1))*N(n,i-1); fi; end;
    Oh:=proc(n) option remember; local r; global N;
    if n=0 then RETURN(1) elif n=1 then RETURN(0) else
    add( 2^(r-2)*N(n,r)*2^(r*(n-r))*Oh(n-r), r=2..n); fi; end;
    [seq(Oh(n),n=0..15)];
  • Mathematica
    ni[n_, i_] := ni[n, i] = If[i == 1, 1, (2^n - 2^(i-1))*ni[n, i-1]]; a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[ 2^(r-2)*ni[n, r]*2^(r*(n-r))*a[n-r], {r, 2, n}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 19 2012, after Maple *)

Formula

Reference gives a recurrence.
a(n) = 2^(n(n-1)/2) * A005327(n+1).

Extensions

More terms from Vladeta Jovovic, Mar 17 2000
Entry revised by N. J. A. Sloane, Aug 10 2011
a(0)=1 prepended by Alois P. Heinz, Jan 10 2025

A379105 Triangular array read by rows. T(n,k) is the number of n X n matrices T over GF(2) such that there are exactly 2^k vectors v in GF(2)^n with Tv=v, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 6, 9, 1, 168, 294, 49, 1, 20160, 37800, 7350, 225, 1, 9999360, 19373760, 4036200, 144150, 961, 1, 20158709760, 39687459840, 8543828160, 326932200, 2542806, 3969, 1, 163849992929280, 325139829719040, 71124337751040, 2812314375360, 23435953128, 42677334, 16129, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 15 2024

Keywords

Comments

Sum_{k=0..n} T(n,k)*2^k = (2^(n+1)-1)*2^(n^2-n) so that as n->oo the average number of fixed points is 2.
T(n,k) is also the number of n X n matrices over GF(2) with nullity k. As n->oo, the probability that a random n X n matrix over GF(q) has nullity k is 1/|GL_k(F_q)|*Product_{i>=k+1} (1 - 1/q^i). - Geoffrey Critzer, Dec 31 2024

Examples

			Triangle T(n,k) begins:
        1;
        1,        1;
        6,        9,       1;
      168,      294,      49,      1;
    20160,    37800,    7350,    225,   1;
  9999360, 19373760, 4036200, 144150, 961, 1;
  ...
		

Crossrefs

Cf. A060867 (T(n,n-1)), A002884 (column k=0), A086699 (column k=1), A346381, A286331.
Row sums give A002416.

Programs

  • Mathematica
    nn = 5; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] :=Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}]; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; L=Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; g[u_, v_, deg_] :=  Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &, L]]; Map[Select[#, # > 0 &] &,  Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0,nn}] CoefficientList[Series[g[u, 1, 1] g[u, v, 1] Product[g[u, 1, deg]^\[Nu][[deg]], {deg, 2, nn}], {u, 0, nn}], {u,v}]] // Grid

Formula

T(n,k)=Product_{j=0..n-k-1} (2^n - 2^j)^2/(2^(n-k)-2^j). - Geoffrey Critzer, Dec 31 2024
Showing 1-2 of 2 results.