cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002884 Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).

Original entry on oeis.org

1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0

Views

Author

Keywords

Comments

Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
The number of boolean operations on n bits, or quantum operations on n qubits, that can be constructed using only CNOT (controlled NOT) gates. - David Radcliffe, Jul 06 2025

Examples

			PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
		

References

  • Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A316622 and A316623.
Cf. A006516, A048651, A203303. Row sums of A381854.

Programs

  • Magma
    [1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    # First program
    A002884:= n-> mul(2^n - 2^i, i=0..n-1);
    seq(A002884(n), n = 0..12);
    # Second program
    A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
    seq(A002884(n), n=0..12);
  • Mathematica
    Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
    Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
    
  • SageMath
    [product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = A203303(n+1)/A203303(n). - R. J. Mathar, Jan 06 2012
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = A006125(n) * A005329(n). - John Keith, Jun 30 2021
a(n) = Product_{k=1..n} A006516(k). - Amiram Eldar, Jul 06 2025

A005327 Certain subgraphs of a directed graph (inverse binomial transform of A005321).

Original entry on oeis.org

1, 0, 1, 6, 91, 2820, 177661, 22562946, 5753551231, 2940064679040, 3007686166657921, 6156733583148764286, 25211824022994189751171, 206510050572345408251841660, 3383254158526734823389921915781
Offset: 1

Views

Author

Keywords

Comments

q-Subfactorial for q=2. - Vladimir Reshetnikov, Sep 12 2016

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
  • T. L. Greenough and T. Lockman, Representation and enumeration of interval orders and semiorders, Ph.D. Thesis, Dartmouth, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    p:=proc(n) if n=0 then 1 else product(2^i-1,i=1..n) fi end: a:=n->p(n-1)*sum((-1)^j/p(j),j=0..n-1): seq(a(n),n=1..17); # Emeric Deutsch, Jan 23 2005
  • Mathematica
    a[1] = 1; a[n_] := a[n] = (2^(n-1)-1)*a[n-1] + (-1)^(n-1); Array[a, 15] (* Jean-François Alcover, Apr 05 2016, after Max Alekseyev *)
    With[{q = 2}, Table[QFactorial[n, q] Sum[(-1)^k/QFactorial[k, q], {k, 0, n}], {n, 0, 20}]] (* Vladimir Reshetnikov, Sep 12 2016 *)

Formula

For n>1, a(n) = (2^(n-1)-1)*a(n-1) + (-1)^(n-1). - Max Alekseyev, Feb 23 2012
a(n) = p(n-1)*sum((-1)^j/p(j), j=0..n-1), where p(0) = 1, p(k) = product(2^i-1, i=1..k) for k>0. - Emeric Deutsch, Jan 23 2005
a(n) ~ A048651^2 * 2^(n*(n-1)/2). - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from Max Alekseyev, Apr 27 2010

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A051680 Number of n X n invertible matrices A over GF(3) such that A-I is invertible.

Original entry on oeis.org

1, 27, 6291, 13589289, 266377183929, 47123189360124723, 75095231825148137471259, 1077370264330489309698453375441, 139124702920688202983704723564457669361
Offset: 1

Views

Author

Vladeta Jovovic, Mar 17 2000

Keywords

Crossrefs

Cf. A002820.

Programs

  • Mathematica
    a[n_] := a[n] = 3^(n-1)*((3^n-1)*a[n-1] + (-1)^n*3^((n-3)*n/2+1)); a[1] = 1; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Jan 12 2012, after formula *)

Formula

a(n) = 3^binomial(n,2)*b(n), with b(0)=1, b(n)=(3^n-1)*b(n-1)+(-1)^(n). - Vladeta Jovovic, Aug 20 2006
From Geoffrey Critzer, Oct 17 2021: (Start)
Sum_{n>=0} a(n)*u^n/A053290(n) = 1/(1-u)*Product_{r>=1} 1-u/3^r.
Limit_{n->inf} a(n)/3^(n^2) = (Product_{r>=1} 1-1/3^r)^2. (End)

A346209 Number of n X n matrices over GF(3) with no eigenvalues in GF(3), i.e., neither 0 nor 1 nor 2 is an eigenvalue.

Original entry on oeis.org

1, 0, 18, 3456, 7619508, 149200289280, 26394940582090344, 42062797470468915399168, 603463180651533072058654437264, 77927374189849689541269666899007713280, 90570450400853976077932766909301405665963077152
Offset: 0

Views

Author

Geoffrey Critzer, Jul 10 2021

Keywords

Comments

Equivalently, a(n) is the number of n X n matrices over GF(3) whose characteristic polynomial has no linear factors.

Crossrefs

Programs

  • Mathematica
    nn = 10; q = 3; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[Product[1/(1 - u^d/q^(r d)), {r, 1, \[Infinity]}]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], u]

Formula

Sum_{n>=0} a(n)*x^n/A053290(n) = Product_{d>=2} (Product_{r>=1} 1/(1-x^d/3^(r*d)))^A027376(d).

A346381 Triangle read by rows. T(n,k) is the number of invertible n X n matrices over GF(2) such that the dimension of the eigenspace corresponding to eigenvalue 1 is k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 0, 1, 2, 3, 1, 48, 98, 21, 1, 5824, 11640, 2590, 105, 1, 2887680, 5775424, 1283400, 52390, 465, 1, 5821595648, 11643190272, 2587376064, 105607080, 938742, 1953, 1, 47317927329792, 94635854692352, 21030189917184, 858375102144, 7630000488, 15879318, 8001, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jul 14 2021

Keywords

Examples

			Triangle begins:
        1;
        0,       1;
        2,       3,      1;
       48,      98,     21,      1;
     5824,   11640,   2590,    105,   1;
  2887680, 5775424, 1283400, 52390, 465, 1;
  ...
T(2,0) = 2 because {{0, 1}, {1, 1}}, {{1, 1}, {1, 0}} do not have 1 as an eigenvalue.
T(2,1) = 3 because {{0, 1}, {1, 0}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}} have 1 as an eigenvalue with corresponding eigenspace of dimension 1.
T(2,2) = 1 because {{1, 0}, {0, 1}} fixes the entire space.
		

Crossrefs

Cf. A002820 (column k=0), A002884 (row sums).

Programs

  • Mathematica
    nn = 15; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[ q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 =
    Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];
    g[u_, v_] := Total[Map[v^Length[#] u^Total[#]/aut[1, #] &,Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}] // Grid

Formula

For n>=1, Sum_{k=0..n} T(n,k)*2^k = 2*A002884(n). - Geoffrey Critzer, Jan 10 2025

A053060 Number of n X n invertible binary matrices A such that A^3+I is invertible.

Original entry on oeis.org

0, 0, 48, 4032, 1935360, 4022599680, 32585690382336, 1063349908766982144, 139112376066747546992640, 72863495247749516035746693120, 152731190537447000980973281829978112
Offset: 1

Views

Author

Vladeta Jovovic, Mar 18 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

A053071 Number of n X n invertible binary matrices A such that A^5+I is invertible.

Original entry on oeis.org

0, 2, 48, 4480, 2887680, 5373624320, 44196975083520, 1442855588252876800, 188570467779447305011200, 98800579402758985681259724800, 207089099087390763078860569942425600
Offset: 1

Views

Author

Vladeta Jovovic, Mar 18 2000

Keywords

References

  • V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.

Crossrefs

A346201 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) such that the sum of the dimensions of their eigenspaces taken over all eigenvalues is k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 0, 2, 2, 6, 8, 48, 196, 210, 58, 5824, 23280, 27020, 8610, 802, 2887680, 11550848, 13756560, 4757260, 581250, 20834, 5821595648, 23286380544, 28097284992, 10075582800, 1369706604, 67874562, 1051586, 47317927329792, 189271709384704, 229853403924480, 83865929653632, 11957394226896, 668707460652, 14779207170, 102233986
Offset: 0

Views

Author

Geoffrey Critzer, Jul 16 2021

Keywords

Examples

			        1;
        0,        2;
        2,        6,        8;
       48,      196,      210,      58;
     5824,    23280,    27020,    8610,    802;
  2887680, 11550848, 13756560, 4757260, 581250, 20834;
		

Crossrefs

Cf. A002820 (column k=0), A132186 (main diagonal), A002416 (row sums).

Programs

  • Mathematica
    nn = 8; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] :=  Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] :=  Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 =
    Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];g[u_, v_] :=
    Total[Map[v^Length[#] u^Total[#]/aut[1, #] &,Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v] g[u, v] Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}])[[n]],
       n], {n, 1, nn}] // Grid

A344886 a(n) is the smallest triangular number that is a multiple of the product of the members of the n-th pair of twin primes.

Original entry on oeis.org

15, 105, 2145, 11628, 94395, 370230, 1565565, 3265290, 13263825, 16689753, 44674878, 62434725, 129757995, 168095280, 190173753, 334822503, 411256860, 659371455, 784892010, 1176876870, 1822721253, 3871076055, 4333386060, 5670113295, 9245348190, 13148662530
Offset: 1

Views

Author

Ali Sada, Jun 01 2021

Keywords

Comments

If we divide each a(n) by the two primes we get a sequence of the triangular numbers of (3 * A002820(n) - 1). If we take the differences between those triangular numbers we get A145061 + 1.
This is a subsequence of A011772, which is really the basic sequence here. - N. J. A. Sloane, Jul 06 2021

Examples

			15 is the smallest triangular number that is a multiple of 3 and 5, so, a(1) = 15.
		

Crossrefs

Programs

  • PARI
    a001359(n, p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2};
    a(n) = my(p=a001359(n), k = (p-1)*(p+2)/2); k*(k+1)/2; \\ Michel Marcus, Jun 10 2021

Formula

For n > 1 a(n) = 3*A001359(n)*A308344(n)*A006512(n-1).
a(n) = A000217(k) = k*(k+1)/2 where k = (A001359(n)-1)*A006512(n)/2. - Jon E. Schoenfield, Jun 01 2021

Extensions

a(22)-a(26) from Jon E. Schoenfield, Jun 01 2021
Showing 1-10 of 10 results.