A346392 a(n) is the number of proper divisors of n ending with the same digit as n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0, 3, 0, 1, 0, 0, 3, 1, 1, 0, 2, 1, 0, 0, 1, 0, 2
Offset: 1
Examples
a(40) = 2 since there are 2 proper divisors of 40 ending with 0: 10 and 20.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Length[Drop[Select[Divisors[n], (Mod[#,10]==Mod[n,10]&)], -1]]; Array[a, 90]
-
PARI
a(n) = my(x = n%10); sumdiv(n, d, if (d
Michel Marcus, Jul 19 2021 -
Python
from sympy import divisors def a(n): return sum(d%10 == n%10 for d in divisors(n)[:-1]) print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Jul 31 2021
Formula
For a prime p, a(p) = 1 if p has the final digit equal to 1, otherwise a(p) = 0.
a(n) = A330348(n) - 1. - Michel Marcus, Jul 19 2021