A346455 a(n) is the smallest number k such that Sum_{j=1..k} (-1)^omega(j) = n, where omega(j) is the number of distinct primes dividing j.
1, 52, 55, 56, 57, 58, 77, 88, 93, 94, 95, 96, 99, 100, 119, 124, 147, 148, 161, 162, 189, 206, 207, 208, 209, 210, 213, 214, 215, 216, 217, 218, 219, 226, 329, 330, 333, 334, 335, 394, 395, 416, 417, 424, 425, 428, 489, 514, 515, 544, 545, 546, 549, 554, 579, 584, 723, 724, 725, 800
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
a[n_]:=(k=1;While[Sum[(-1)^PrimeNu@j,{j,k}]!=n,k++];k);Array[a,25] (* Giorgos Kalogeropoulos, Jul 19 2021 *)
-
PARI
a(n) = my(k=1); while (sum(j=1, k, (-1)^omega(j)) !=n, k++); k; \\ Michel Marcus, Jul 19 2021
Formula
a(n) = min {k : Sum_{j=1..k} mu(rad(j)) = n}, where mu is the Moebius function and rad is the squarefree kernel.