cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346457 a(n) is the smallest number k such that |Sum_{j=1..k} (-1)^omega(j)| = n, where omega(j) is the number of distinct primes dividing j.

Original entry on oeis.org

1, 4, 5, 8, 9, 32, 77, 88, 93, 94, 95, 96, 99, 100, 119, 124, 147, 148, 161, 162, 189, 206, 207, 208, 209, 210, 213, 214, 215, 216, 217, 218, 219, 226, 329, 330, 333, 334, 335, 394, 395, 416, 417, 424, 425, 428, 489, 514, 515, 544, 545, 546, 549, 554, 579, 584, 723, 724, 725, 800
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 19 2021

Keywords

Crossrefs

Programs

  • Maple
    N:= 10000: # for values <= N
    omega:= n -> nops(numtheory:-factorset(n)):
    R:= map(n -> (-1)^omega(n),[$1..10000]):
    S:= map(abs,ListTools:-PartialSums(R)):
    m:= max(S):
    V:= Vector(m):
    for i from 1 to N do if S[i] > 0 and V[S[i]] = 0 then V[S[i]]:= i fi od:
    convert(V,list); # Robert Israel, Oct 30 2023
  • Mathematica
    Table[k=1;While[Abs[Sum[(-1)^PrimeNu@j,{j,k}]]!=n,k++];k,{n,30}] (* Giorgos Kalogeropoulos, Jul 19 2021 *)
  • PARI
    a(n) = my(k=1); while (abs(sum(j=1, k, (-1)^omega(j))) != n, k++); k; \\ Michel Marcus, Jul 19 2021

Formula

a(n) = min {k : |Sum_{j=1..k} mu(rad(j))| = n}, where mu is the Moebius function and rad is the squarefree kernel.