A346465 Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m).
9, 11, 18, 27, 32, 36, 45, 50, 53, 54, 63, 68, 72, 74, 78, 81, 90, 95, 99, 100, 108, 116, 117, 126, 127, 135, 137, 144, 147, 150, 153, 155, 158, 162, 171, 179, 180, 182, 189, 198, 200, 204, 207, 216, 221, 225, 233, 234, 242, 243, 250, 252, 261, 263, 270, 279
Offset: 1
Keywords
Programs
-
Maple
with(NumberTheory): isa := n -> not IsSquareFree(((4^n - 2)*(4^n - 1))/ mul(i, i = select(isprime, map(i -> i+1, Divisors(2*n))))): select(isa, [$(1..100)]);
-
Mathematica
q[n_] := Product[k, {k, Select[Table[d + 1, {d, Divisors[2 n]}], PrimeQ]}]; isA[n_] := ! SquareFreeQ[((4^n - 2) (4^n -1)) / q[n]]; Select[Range[50], isA]
Formula
Extensions
More terms from Jinyuan Wang, Jul 23 2021
Comments