cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346466 The least common multiple of all divisors d of n-1 such that d+1 is a prime divisor of n; a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 2, 1, 22, 1, 4, 1, 2, 1, 28, 1, 30, 1, 2, 1, 1, 1, 36, 1, 2, 1, 40, 1, 42, 1, 4, 1, 46, 1, 6, 1, 2, 1, 52, 1, 1, 1, 2, 1, 58, 1, 60, 1, 2, 1, 4, 1, 66, 1, 2, 1, 70, 1, 72, 1, 2, 1, 1, 1, 78, 1, 2, 1, 82, 1, 4, 1, 2, 1, 88, 1, 6, 1, 2, 1, 1, 1, 96, 1, 2, 1, 100, 1, 102, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2021

Keywords

Examples

			From _M. F. Hasler_, Nov 23 2021: (Start)
For n = 2, the only prime factor of n is p = 2, and p-1 = 1 divides n-1 = 1, therefore a(2) = LCM { 1 } = 1.
For n = 35, the prime factors of n are p = 5 and p = 7; but neither 5-1 = 4 nor 7-1 = 6 divides n-1 = 34, therefore a(35) = LCM {} = 1. (End)
		

Crossrefs

Cf. also A173614, A346467.

Programs

  • PARI
    A346466(n) = lcm(apply(p->if((n-1)%(p-1),1,(p-1)), factor(n)[, 1]));
    
  • PARI
    A346466(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d)&&!(n%(1+d)),m = lcm(m,d))); (m));
    
  • PARI
    apply( {A346466(n)=lcm([p-1|p<-factor(n)[,1],(n-1)%(p-1)==0])}, [1..99]) \\ M. F. Hasler, Nov 23 2021

Formula

a(n) = LCM_{p-1|n-1, p|n, p prime} (p-1).
a(n) = p-1 for prime powers n = p^e, e >= 1; a(n) = 1 for any even n = 2k. - M. F. Hasler, Nov 23 2021