cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346484 Composite numbers k for which A346482(k) = 0.

Original entry on oeis.org

16, 81, 128, 360, 504, 540, 600, 625, 756, 792, 936, 1024, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1500, 1656, 1836, 1960, 2052, 2088, 2187, 2200, 2232, 2250, 2401, 2484, 2600, 2646, 2664, 2904, 2952, 3096, 3132, 3348, 3384, 3400, 3500, 3800, 3816, 3996, 4056, 4116, 4248, 4312, 4392, 4428, 4600, 4644, 4725, 4824
Offset: 1

Views

Author

Mats Granvik and Antti Karttunen, Aug 17 2021

Keywords

Comments

Let p, q and r be distinct primes and m >= 1. If k = p^(3*m + 1) or k = p^3 * q^2 * r, then k is in the sequence. Do all terms have this form? - Sebastian Karlsson, Dec 09 2022

Crossrefs

Cf. A346482.

Programs

A355939 Dirichlet inverse of A080339, characteristic function of noncomposite numbers.

Original entry on oeis.org

1, -1, -1, 1, -1, 2, -1, -1, 1, 2, -1, -3, -1, 2, 2, 1, -1, -3, -1, -3, 2, 2, -1, 4, 1, 2, -1, -3, -1, -6, -1, -1, 2, 2, 2, 6, -1, 2, 2, 4, -1, -6, -1, -3, -3, 2, -1, -5, 1, -3, 2, -3, -1, 4, 2, 4, 2, 2, -1, 12, -1, 2, -3, 1, 2, -6, -1, -3, 2, -6, -1, -10, -1, 2, -3, -3, 2, -6, -1, -5, 1, 2, -1, 12, 2, 2, 2, 4, -1, 12, 2, -3, 2, 2, 2, 6, -1, -3, -3, 6, -1, -6, -1, 4, -6
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2022

Keywords

Comments

The absolute values of this sequence are given by A008480. Compare also to A355817 and A335452.

Crossrefs

Programs

  • Mathematica
    s[n_] := If[CompositeQ[n], 0, 1]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 21 2022 *)
  • PARI
    memoA355939 = Map();
    A355939(n) = if(1==n,1,my(v); if(mapisdefined(memoA355939,n,&v), v, v = -sumdiv(n,d,if(dA355939(d),0)); mapput(memoA355939,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA010051(n/d) * a(d).
Dirichlet g.f.: 1/(1 + B(s)), where B(s) is d.g.f. of characteristic function of primes. - Vaclav Kotesovec, Jul 22 2022

A346483 Sum of A005171 (characteristic function of nonprimes) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Mats Granvik and Antti Karttunen, Aug 17 2021

Keywords

Comments

The first negative term is a(192) = -1.
Positions of nonzero terms are given by A033987, except for positions n = 256, 512, 6561, 16384, 19683, 32768, 390625, 1048576, ..., at which a(n) = 0 also.

Crossrefs

Programs

  • Mathematica
    nn = 87; b = Table[If[PrimeQ[n], 1, 0], {n, nn}]; a = 1 - b; A = Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]; B = Inverse[A]; S = A[[Range[nn]]] + B[[Range[nn]]]; S[[All, 1]]
  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA005171(n) = (1-isprime(n));
    v346482 = DirInverseCorrect(vector(up_to,n,A005171(n)));
    A346482(n) = v346482[n];
    A346483(n) = (A005171(n)+A346482(n));

Formula

a(n) = A005171(n) + A346482(n).
For n > 1, a(n) = -Sum_{d|n, 1A005171(d) * A346482(n/d).
Showing 1-3 of 3 results.