cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346483 Sum of A005171 (characteristic function of nonprimes) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Mats Granvik and Antti Karttunen, Aug 17 2021

Keywords

Comments

The first negative term is a(192) = -1.
Positions of nonzero terms are given by A033987, except for positions n = 256, 512, 6561, 16384, 19683, 32768, 390625, 1048576, ..., at which a(n) = 0 also.

Crossrefs

Programs

  • Mathematica
    nn = 87; b = Table[If[PrimeQ[n], 1, 0], {n, nn}]; a = 1 - b; A = Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]; B = Inverse[A]; S = A[[Range[nn]]] + B[[Range[nn]]]; S[[All, 1]]
  • PARI
    up_to = 65537;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA005171(n) = (1-isprime(n));
    v346482 = DirInverseCorrect(vector(up_to,n,A005171(n)));
    A346482(n) = v346482[n];
    A346483(n) = (A005171(n)+A346482(n));

Formula

a(n) = A005171(n) + A346482(n).
For n > 1, a(n) = -Sum_{d|n, 1A005171(d) * A346482(n/d).