cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357308 a(0) = a(1) = 0, a(2) = 1; a(n) = a(n-1) + Sum_{k=0..n-3} a(k) * a(n-k-3).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 24, 39, 67, 116, 196, 324, 534, 892, 1516, 2601, 4463, 7630, 13022, 22276, 38286, 66084, 114328, 197929, 342783, 594218, 1031794, 1794944, 3127450, 5455272, 9523812, 16640542, 29102938, 50951070, 89289998, 156616648, 274923328, 482945930, 848972814
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 44}]
    nmax = 44; A[] = 0; Do[A[x] = x^2 (1 + x A[x]^2)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = x^2 * (1 + x * A(x)^2) / (1 - x).

A346503 G.f. A(x) satisfies A(x) = 1 + x^3 * A(x)^2 / (1 - x).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 5, 7, 14, 26, 43, 79, 148, 264, 483, 903, 1664, 3080, 5771, 10795, 20209, 38059, 71799, 135569, 256762, 487310, 925981, 1762841, 3361897, 6419595, 12275301, 23505143, 45061424, 86485016, 166176499, 319630115, 615387675, 1185940209, 2287527119, 4416083429
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = 1 + x^3 A[x]^2/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n - 1] + Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 40}]

Formula

a(0) = 1, a(1) = a(2) = 0; a(n) = a(n-1) + Sum_{k=0..n-3} a(k) * a(n-k-3).
a(n) ~ 2^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 30 2021
From Seiichi Manyama, Sep 26 2024: (Start)
G.f.: 2/(1 + sqrt(1 - 4*x^3/(1 - x))).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(n-2*k-1,n-3*k) / (k+1). (End)

A357307 a(0) = 1, a(1) = 0, a(2) = 1; a(n) = a(n-1) + Sum_{k=0..n-3} a(k) * a(n-k-3).

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 8, 13, 25, 49, 91, 177, 349, 681, 1349, 2693, 5377, 10806, 21820, 44163, 89721, 182868, 373616, 765341, 1571551, 3233690, 6667242, 13772469, 28498419, 59065838, 122606998, 254865837, 530507839, 1105663034, 2307131590, 4819623077, 10079039819, 21099213611, 44211213545
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 38}]
    nmax = 38; A[] = 0; Do[A[x] = 1 + x^2 (1 + x A[x]^2)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x^2 * (1 + x * A(x)^2) / (1 - x).
Showing 1-3 of 3 results.