A346507 Positive integers k that are the product of two integers greater than 1 and ending with 1.
121, 231, 341, 441, 451, 561, 651, 671, 781, 861, 891, 961, 1001, 1071, 1111, 1221, 1271, 1281, 1331, 1441, 1491, 1551, 1581, 1661, 1681, 1701, 1771, 1881, 1891, 1911, 1991, 2091, 2101, 2121, 2201, 2211, 2321, 2331, 2431, 2501, 2511, 2541, 2601, 2651, 2751, 2761
Offset: 1
Examples
121 = 11*11, 231 = 11*21, 341 = 11*31, 441 = 21*21, 451 = 11*41, ...
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a={}; For[n=1, n<=300, n++, For[k=1, k
Max[a], AppendTo[a, 10n+1]]]]; a -
PARI
isok(k) = fordiv(k, d, if ((d>1) && (d
Michel Marcus, Jul 28 2021 -
Python
def aupto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10))) print(aupto(2761)) # Michael S. Branicky, Jul 22 2021
Formula
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 21 2021
Comments