cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346507 Positive integers k that are the product of two integers greater than 1 and ending with 1.

Original entry on oeis.org

121, 231, 341, 441, 451, 561, 651, 671, 781, 861, 891, 961, 1001, 1071, 1111, 1221, 1271, 1281, 1331, 1441, 1491, 1551, 1581, 1661, 1681, 1701, 1771, 1881, 1891, 1911, 1991, 2091, 2101, 2121, 2201, 2211, 2321, 2331, 2431, 2501, 2511, 2541, 2601, 2651, 2751, 2761
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Comments

All the terms end with 1 (A017281).

Examples

			121 = 11*11, 231 = 11*21, 341 = 11*31, 441 = 21*21, 451 = 11*41, ...
		

Crossrefs

Cf. A017281 (supersequence), A053742 (ending with 5), A324297 (ending with 6), A346508, A346509, A346510.

Programs

  • Mathematica
    a={}; For[n=1, n<=300, n++, For[k=1, kMax[a], AppendTo[a, 10n+1]]]]; a
  • PARI
    isok(k) = fordiv(k, d, if ((d>1) && (dMichel Marcus, Jul 28 2021
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2761)) # Michael S. Branicky, Jul 22 2021
    

Formula

Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 21 2021