cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346558 a(n) = Sum_{d|n} phi(n/d) * (2^d - 1).

Original entry on oeis.org

1, 4, 9, 20, 35, 78, 133, 280, 531, 1070, 2057, 4212, 8203, 16534, 32865, 65840, 131087, 262818, 524305, 1049740, 2097459, 4196390, 8388629, 16782024, 33554575, 67117102, 134218809, 268452212, 536870939, 1073777010, 2147483677, 4295033440, 8589938775, 17180000318, 34359739085
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[n/d] (2^d - 1), {d, Divisors[n]}], {n, 1, 35}]
    nmax = 35; CoefficientList[Series[Sum[EulerPhi[k] x^k/((1 - x^k) (1 - 2 x^k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*(2^d - 1)); \\ Michel Marcus, Sep 17 2021

Formula

G.f.: Sum_{k>=1} phi(k) * x^k / ((1 - x^k) * (1 - 2*x^k)).
a(n) = Sum_{k=1..n} (2^gcd(n,k) - 1).
a(n) = n * (A000031(n) - 1) = n * A008965(n).
Dirichlet convolution of A000225 and A000010. - R. J. Mathar, Sep 30 2021