A346635 Numbers whose division (or multiplication) by their greatest prime factor yields a perfect square. Numbers k such that k*A006530(k) is a perfect square.
1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 67, 68, 71, 73, 76, 79, 80, 83, 89, 92, 97, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 148, 149, 151, 153
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 31: {11} 71: {20} 2: {1} 32: {1,1,1,1,1} 73: {21} 3: {2} 37: {12} 76: {1,1,8} 5: {3} 41: {13} 79: {22} 7: {4} 43: {14} 80: {1,1,1,1,3} 8: {1,1,1} 44: {1,1,5} 83: {23} 11: {5} 45: {2,2,3} 89: {24} 12: {1,1,2} 47: {15} 92: {1,1,9} 13: {6} 48: {1,1,1,1,2} 97: {25} 17: {7} 52: {1,1,6} 99: {2,2,5} 19: {8} 53: {16} 101: {26} 20: {1,1,3} 59: {17} 103: {27} 23: {9} 61: {18} 107: {28} 27: {2,2,2} 63: {2,2,4} 108: {1,1,2,2,2} 28: {1,1,4} 67: {19} 109: {29} 29: {10} 68: {1,1,7} 112: {1,1,1,1,4}
Crossrefs
Removing 1 gives a subset of A026424.
The unsorted even version is A129597.
Except the first term, the even version is 2*a(n).
A000290 lists squares.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A006530 gives the greatest prime factor.
A061395 gives the greatest prime index.
A027193 counts partitions of odd length.
A344606 counts alternating permutations of prime indices.
Programs
-
Maple
filter:= proc(n) issqr(n/max(numtheory:-factorset(n))) end proc: filter(1):= true: select(filter, [$1..200]); # Robert Israel, Nov 26 2022
-
Mathematica
sqrQ[n_]:=IntegerQ[Sqrt[n]]; Select[Range[100],sqrQ[#*FactorInteger[#][[-1,1]]]&]
-
PARI
isok(m) = (m==1) || issquare(m/vecmax(factor(m)[,1])); \\ Michel Marcus, Aug 12 2021
Formula
a(n) = A129597(n)/2 for n > 1.
Comments