cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346664 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(4*k,k) / (3*k + 1).

Original entry on oeis.org

1, 0, 3, 12, 73, 453, 2985, 20373, 142933, 1024302, 7466211, 55182240, 412586977, 3115105321, 23717115513, 181884676827, 1403719428485, 10894049061956, 84967420574247, 665643698649684, 5235570329071893, 41328838600501830, 327315349579739619, 2600034901186102182
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 27 2021

Keywords

Comments

Inverse binomial transform of A002293.

Crossrefs

Programs

  • Maple
    A346664 := proc(n)
        add( (-1)^(n-k)*binomial(n,k)*binomial(4*k,k)/(3*k+1),k=0..n) ;
    end proc:
    seq(A346664(n),n=0..80); # R. J. Mathar, Aug 17 2023
  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 23}]
    nmax = 23; A[] = 0; Do[A[x] = 1/(1 + x) + x (1 + x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 23; CoefficientList[Series[Sum[(Binomial[4 k, k]/(3 k + 1)) x^k/(1 + x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[(-1)^n HypergeometricPFQ[{1/4, 1/2, 3/4, -n}, {2/3, 1, 4/3}, 256/27], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*binomial(4*k,k)/(3*k+1)); \\ Michel Marcus, Jul 28 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * (1 + x)^2 * A(x)^4.
G.f.: Sum_{k>=0} ( binomial(4*k,k) / (3*k + 1) ) * x^k / (1 + x)^(k+1).
a(n) ~ 229^(n + 3/2) / (2048 * sqrt(2*Pi) * n^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
D-finite with recurrence +3*n*(3*n-1)*(3*n+1)*a(n) -74*n*(2*n-1) *(n-1)*a(n-1) -6*(n-1) *(101*n^2 -202*n +105)*a(n-2) -330*(n-1) *(n-2)*(2*n-3) *a(n-3) -229*(n-1)*(n-2) *(n-3)*a(n-4)=0. - R. J. Mathar, Aug 17 2023