A346729 Maximum number of divisors among n-bit numbers.
1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 120, 144, 168, 200, 240, 288, 360, 432, 504, 600, 720, 864, 1008, 1152, 1344, 1600, 1920, 2304, 2688, 3072, 3584, 4096, 4800, 5760, 6720, 7680, 8640, 10080, 11520, 13824, 16128, 18432, 20736, 23040, 27648
Offset: 1
Keywords
Examples
There are four 3-bit numbers: 4 = 100_2, 5 = 101_2 = 5, 6 = 110_2, 7 = 111_2. 5 and 7 are both prime, so each has 2 divisors; 4 = 2^2 has 3 divisors (1, 2, and 4), and 6 = 2*3 has 4 divisors (1, 2, 3, and 6). Thus, the maximum number of divisors among 3-bit numbers is A000005(6) = 4, so a(3)=4.
Programs
-
Mathematica
a[n_]:=Max[Table[DivisorSigma[0,k],{k,2^(n-1),2^n-1}]]; Table[a[n],{n,23}] (* Stefano Spezia, Aug 02 2021 *)
-
PARI
a(n) = vecmax(apply(numdiv, [2^(n-1)..2^n-1])); \\ Michel Marcus, Aug 03 2021
-
Python
from sympy import divisors def a(n): return max(len(divisors(n)) for n in range(2**(n-1), 2**n)) print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Aug 02 2021
Comments