A346787 Ordered lone-child-avoiding trees where vertices have decreasing subtree sizes.
1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 68, 128, 253, 489, 981, 1930, 3899, 7771, 15858, 31915, 65503, 133070, 274631, 561371, 1164240, 2393652, 4983614, 10299238, 21511537, 44637483, 93552858, 194809152, 409270569, 855199845, 1800958182, 3773297872, 7963655481
Offset: 1
Keywords
Examples
See Link.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2948
- David Callan, Trees of size up to 7 for A346787
- David Callan, A Combinatorial Interpretation for Sequence A345973 in OEIS, arXiv:2108.04969 [math.CO], 2021.
Crossrefs
Cf. A196545.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i)))) end: a:= n-> b(n-1, n-2): seq(a(n), n=1..40); # Alois P. Heinz, Aug 05 2021
-
Mathematica
a[1] = 1; a[2] = 0; a[n_] /; n >= 3 := a[n] = Apply[Plus, Map[Apply[Times, Map[a, #]] &, Rest[IntegerPartitions[n - 1]]]] Table[a[n], {n, 20}]
Formula
Counting by sizes of subtrees of the root, a(n) is the sum, over all non-singleton partitions i_1,i_2,...,i_k of n-1, of the product a(i_1)a(i_2) ... a(i_k).
G.f. satisfies A(x)=x/((1+x)*Product_{n>=1} (1 - a(n)*x^n)).
Comments