cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A347598 a(n) = permanent(T(n)), where T(n) is the tangent matrix defined in A346831 and n >= 1; by convention a(0) = 1.

Original entry on oeis.org

1, 0, -1, 2, 5, -12, -61, 230, 1385, -6936, -50521, 316682, 2702765, -20359332, -199360981, 1754340590, 19391512145, -195242324016, -2404879675441, 27266796955922, 370371188237525, -4669829301365052, -69348874393137901, 962523286888757750, 15514534163557086905
Offset: 0

Views

Author

Peter Luschny, Sep 12 2021

Keywords

Comments

This sequence is an extension of the even-indexed Euler numbers A028296. These numbers can be extended to A000111 by adding the expansion of the tangent function, respectively considering the alternating permutations. Here one gets a different extension of the nonzero Euler numbers by considering the permutations A347601 and A347602 based on the permanent of the tangent matrix as defined in A346831. An overview gives a table in A347601.

Crossrefs

Programs

  • Maple
    # Uses the function TangentMatrix from A346831.
    A347598 := n -> `if`(n = 0, 1, LinearAlgebra:-Permanent(TangentMatrix(n))):
    seq(A347598(n), n = 0..12);
  • Sage
    def TangentMatrix(N):
        M = matrix(N, N)
        H = (N + 1) // 2
        for n in range(1, N):
            for k in range(n):
                M[n - k - 1, k] = 1 if n < H else -1
                M[N - n + k, N - k - 1] = -1 if n < N - H else 1
        return M
    def A347598(n):
        if n == 0: return 1
        return TangentMatrix(n).permanent()
    print([A347598(n) for n in range(12)])

Formula

a(2*n) = A028296(n); a(2*n + 1) = A347597(n).

A347597 a(n) = Permanent(T(2*n + 1)) where T(n) is the tangent matrix defined in A346831. Bisection of A347598 (odd indices).

Original entry on oeis.org

0, 2, -12, 230, -6936, 316682, -20359332, 1754340590, -195242324016, 27266796955922, -4669829301365052, 962523286888757750, -235056895264868039496, 67119429827860669710362
Offset: 0

Views

Author

Peter Luschny, Sep 14 2021

Keywords

Crossrefs

A347601 a(n) is the number of positive Euler permutations of order n.

Original entry on oeis.org

1, 0, 0, 2, 7, 16, 102, 1042, 8109, 63280, 642220, 7500626, 89458803, 1135216800, 15935870034, 241410428162, 3858227881945, 65327424977824, 1176448390679256, 22388999178300514, 447692501190569823, 9395318712874789744, 206713705368363820990, 4755693997171333347506
Offset: 0

Views

Author

Peter Luschny, Sep 10 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of the tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a positive Euler permutation of order n (or sigma in EP(n)) if P = 1 and a negative Euler permutation of order n (or sigma in EN(n)) if P = -1.
a(n) = card(EP(n)), the number of positive Euler permutations of order n. A table of positive Euler permutations is given in A347766. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Examples

			Illustrating the decomposition of the rencontres numbers and the Euler numbers:
The third column is the sum of the first two columns and the fourth column is the difference between the first two. The fourth column is the sum of the last two.
[n]  A347601     A347602      A000166       A347598      A122045   A347597
--------------------------------------------------------------------------
[ 0] 1,           0,           1,            1,          1,          [0]
[ 1] 0,           0,           0,            0,          0,          0,
[ 2] 0,           1,           1,           -1,         -1,          [0]
[ 3] 2,           0,           2,            2,          0,          2,
[ 4] 7,           2,           9,            5,          5,          [0]
[ 5] 16,          28,          44,          -12,         0,         -12,
[ 6] 102,         163,         265,         -61,        -61,         [0]
[ 7] 1042,        812,         1854,         230,        0,          230,
[ 8] 8109,        6724,        14833,        1385,       1385,       [0]
[ 9] 63280,       70216,       133496,      -6936,       0,         -6936,
[10] 642220,      692741,      1334961,     -50521,     -50521,      [0].
		

Crossrefs

Cf. A000166, A122045, A346831, A347597, A347598, A347602 (neg. perm.), A347766 (table), A347599, A347600, A346719 (bisection even indices).

Programs

  • Julia
    using Combinatorics
    function TangentMatrix(N)
        M = zeros(Int, N, N)
        H = div(N + 1, 2)
        for n in 1:N - 1
            for k in 0:n - 1
                M[n - k, k + 1] = n < H ? 1 : -1
                M[N - n + k + 1, N - k] = n < N - H ? -1 : 1
            end
        end
    M end
    function EulerPermutations(n, sgn)
        M = TangentMatrix(n)
        S = 0
        for p in permutations(1:n)
            sgn == prod(M[k, p[k]] for k in 1:n) && (S += 1)
        end
    S end
    PositiveEulerPermutations(n) = EulerPermutations(n, 1)
  • Maple
    # Uses function TangentMatrix from A346831.
    EulerPermutations := proc(n, sgn) local M, P, N, s, p, m;
       M := TangentMatrix(n); P := 0; N := 0;
       for p in Iterator:-Permute(n) do
          m := mul(M[k, p(k)], k = 1..n);
          if m =  0 then next fi;
          if m =  1 then P := P + 1 fi;
          if m = -1 then N := N + 1 fi; od;
       if sgn = 'pos' then P else N fi end:
    A347601 := n -> `if`(n = 0, 1, EulerPermutations(n, 'pos')):
    seq(A347601(n), n = 0..8);

Formula

Let |S| denote the cardinality of a set S. Following identities hold for n >= 0:
a(n) + A347602(n) = |EP(n) | + |EN(n) | = A000166(n) (rencontres numbers),
a(2n) - A347602(2n) = |EP(2n)| - |EN(2n)| = A122045(n) (Euler numbers),
a(n) - A347602(n) = |EP(n) | - |EN(n) | = A347598(n).

A347602 a(n) is the number of negative Euler permutations of order n.

Original entry on oeis.org

0, 0, 1, 0, 2, 28, 163, 812, 6724, 70216, 692741, 7183944, 86756038, 1155576132, 16135231015, 239656087572, 3838836369800, 65522667301840, 1178853270354697, 22361732381344592, 447322130002332298, 9399988542176154796, 206783054242756958891, 4754731473884444589756
Offset: 0

Views

Author

Peter Luschny, Sep 10 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of the tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a positive Euler permutation of order n (or sigma in EP(n)) if P = 1 and a negative Euler permutation of order n (or sigma in EN(n)) if P = -1.
a(n) = card(EN(n)), the number of negative Euler permutations of order n. A table of negative Euler permutations is given in A347767. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Crossrefs

Cf. A000166, A122045, A346831, A347597, A347598, A347601 (pos. perm.), A347767 (table), A347599, A347600, A346720 (bisection even indices).

Programs

  • Maple
    # Uses function EulerPermutations from A347601.
    A347602 := n -> `if`(n = 0, 0, EulerPermutations(n, 'neg')):
    seq(A347602(n), n = 0..8);

Formula

Let |S| denote the cardinality of a set S. Following identities hold for n >= 0:
A347601(n) + a(n) = |EP(n) | + |EN(n) | = A000166(n) (rencontres numbers),
A347601(2n) - a(2n) = |EP(2n)| - |EN(2n)| = A122045(n) (Euler numbers),
A347601(n) - a(n) = |EP(n) | - |EN(n) | = A347598(n).

A346837 Table read by rows, coefficients of the determinant polynomials of the generalized tangent matrices.

Original entry on oeis.org

1, 0, 1, -1, 0, -1, -2, -1, 0, -1, 1, 0, 6, 0, 1, -4, 1, 12, 6, 0, 1, -1, 0, -15, 0, -15, 0, -1, -14, -17, 12, 1, -30, -15, 0, -1, 1, 0, 28, 0, 70, 0, 28, 0, 1, -40, -63, 72, 156, 40, 6, 56, 28, 0, 1
Offset: 0

Views

Author

Peter Luschny, Sep 11 2021

Keywords

Comments

The generalized tangent matrix M(n, k) is an N X N matrix defined for n in [1..N-1] and for k in [0..n-1] with h = floor((N+1)/2) as:
M[n - k, k + 1] = if n < h then 1 otherwise -1,
M[N - n + k + 1, N - k] = if n < N - h then -1 otherwise 1,
and the indeterminate x in the main antidiagonal.
The tangent matrix M(n, k) as defined in A346831 is the special case which arises from setting x = 0. The determinant of a generalized tangent matrix M is a polynomial which we call the determinant polynomial of M.

Examples

			Table starts:
[0]   1;
[1]   0,   1;
[2]  -1,   0,  -1;
[3]  -2,  -1,   0,  -1;
[4]   1,   0,   6,   0,   1;
[5]  -4,   1,  12,   6,   0,   1;
[6]  -1,   0, -15,   0, -15,   0, -1;
[7] -14, -17,  12,   1, -30, -15,  0, -1;
[8]   1,   0,  28,   0,  70,   0, 28,  0, 1;
[9] -40, -63,  72, 156,  40,   6, 56, 28, 0, 1.
.
The first few generalized tangent matrices:
1       2          3              4                  5
---------------------------------------------------------------
x;   -1  x;    1  -1  x;    1  -1  -1   x;   1   1  -1  -1   x;
      x  1;   -1   x  1;   -1  -1   x   1;   1  -1  -1   x   1;
               x   1  1;   -1   x   1   1;  -1  -1   x   1   1;
                            x   1   1  -1;  -1   x   1   1   1;
                                             x   1   1   1  -1;
		

Crossrefs

Cf. A011782 (row sums modulo sign), A347596 (alternating row sums), A346831.

Programs

  • Maple
    GeneralizedTangentMatrix := proc(N) local M, H, n, k;
       M := Matrix(N, N); H := iquo(N + 1, 2);
       for n from 1 to N - 1 do for k from 0 to n - 1 do
           M[n - k, k + 1] := `if`(n < H, 1, -1);
           M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1);
    od od; for k from 1 to N do M[k, N-k+1] := x od;
    M end:
    A346837Row := proc(n) if n = 0 then return 1 fi;
       GeneralizedTangentMatrix(n):
       LinearAlgebra:-Determinant(%);
       seq(coeff(%, x, k), k = 0..n) end:
    seq(A346837Row(n), n = 0..9);
  • Mathematica
    GeneralizedTangentMatrix[N_] := Module[{M, H, n, k},
       M = Array[0&, {N, N}]; H = Quotient[N + 1, 2];
       For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++,
          M[[n - k, k + 1]] = If[n < H, 1, -1];
          M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]];
          For[k = 1, k <= N, k++, M[[k, N - k + 1]] = x]; M];
    A346837Row[n_] := If[n == 0, {1}, CoefficientList[ Det[
       GeneralizedTangentMatrix[n]], x]];
    Table[A346837Row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)

A347766 Irregular table read by rows, T(n, k) is the rank of the k-th positive Euler permutation of {1,...,n}, permutations sorted in lexicographical order. If no such permutation exists, then T(n, 0) = 0 by convention.

Original entry on oeis.org

1, 0, 0, 2, 3, 1, 6, 8, 11, 14, 15, 17, 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92, 2, 6, 15, 16, 21, 26, 30, 40, 44, 54, 55, 60, 68, 99, 104, 120, 121, 123, 124, 125, 137, 138, 142, 143, 144, 146, 150, 161, 164, 167, 174, 175, 177, 179, 185
Offset: 0

Views

Author

Peter Luschny, Sep 12 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of a tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a positive Euler permutation of order n if P = 1. See A347601 for further details.
A347767 gives the table of negative Euler permutations. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Examples

			Table of positive Euler permutations, length of rows is A347601:
[0] 1;
[1] 0;
[2] 0;
[3] 2, 3;
[4] 1, 6, 8, 11, 14, 15, 17;
[5] 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92.
.
The 16 permutations corresponding to the ranks are for n = 5:
    3 -> [12435],  8 -> [13254], 24 -> [15432], 28 -> [21453],
   29 -> [21534], 30 -> [21543], 32 -> [23154], 35 -> [23514],
   50 -> [31254], 55 -> [32145], 57 -> [32415], 68 -> [35142],
   71 -> [35412], 74 -> [41253], 79 -> [42135], 92 -> [45132].
		

Crossrefs

Programs

  • Maple
    # Uses function TangentMatrix from A346831.
    EulerPermutationsRank := proc(n, sgn) local M, P, N, s, p, m, rank;
       M := TangentMatrix(n); P := []; N := []; rank := 0;
       for p in Iterator:-Permute(n) do
          rank := rank + 1;
          m := mul(M[k, p(k)], k = 1..n);
          if m =  0 then next fi;
          if m =  1 then P := [op(P), rank] fi;
          if m = -1 then N := [op(N), rank] fi; od;
       if sgn = 'pos' then P else N fi end:
    A347766Row := n -> `if`(n < 3, [[1,0,0][n+1]], EulerPermutationsRank(n, 'pos')):
    for n from 0 to 5 do A347766Row(n) od;

A347767 Irregular table read by rows, T(n, k) is the rank of the k-th negative Euler permutation of {1,...,n}, permutations sorted in lexicographical order. If no such permutation exists, then T(n, 0) = 0 by convention.

Original entry on oeis.org

0, 0, 1, 0, 2, 7, 4, 5, 6, 7, 10, 12, 19, 20, 27, 31, 33, 43, 44, 47, 49, 52, 54, 56, 59, 69, 73, 78, 80, 83, 86, 87, 89, 93, 1, 3, 4, 5, 17, 18, 22, 23, 24, 25, 27, 28, 29, 37, 38, 42, 43, 46, 48, 51, 52, 53, 56, 58, 61, 62, 66, 67, 72, 100, 101, 102, 103, 106
Offset: 0

Views

Author

Peter Luschny, Sep 12 2021

Keywords

Comments

Let M be the tangent matrix of dimension n X n. The definition of a tangent matrix is given in A346831. An Euler permutation of order n is a permutation sigma of {1,...,n} if P = Product_{k=1..n} M(k, sigma(k)) does not vanish. We say sigma is a negative Euler permutation of order n if P = -1. See A347601 for further details.
A347766 gives the table of positive Euler permutations. Related sequences are A347599 (Genocchi permutations) and A347600 (Seidel permutations).

Examples

			Table of negative Euler permutations, length of rows is A347602:
[0] 0;
[1] 0;
[2] 1;
[3] 0;
[4] 2, 7;
[5] 4, 5, 6, 7, 10, 12, 19, 20, 27, 31, 33, 43, 44, 47, 49, ...
.
The first 8 permutations corresponding to the ranks are for n = 5:
    4 -> [12453],  5 -> [12534],  6 -> [12543],  7 -> [13245],
   10 -> [13452], 12 -> [13542], 19 -> [15234], 20 -> [15243].
		

Crossrefs

Programs

  • Maple
    # Uses function EulerPermutationsRank from A347766.
    A347767Row := n -> `if`(n < 4, [[0,0,1,0][n+1]], EulerPermutationsRank(n, 'neg')): for n from 0 to 6 do A347767Row(n) od;
Showing 1-7 of 7 results.