cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346838 a(n) = (PolyLog(-n, -i) - exp(i*Pi*n)*PolyLog(-n, i)) * i / exp(i*Pi*n/2).

Original entry on oeis.org

1, -1, 1, -2, 5, -16, 61, -272, 1385, -7936, 50521, -353792, 2702765, -22368256, 199360981, -1903757312, 19391512145, -209865342976, 2404879675441, -29088885112832, 370371188237525, -4951498053124096, 69348874393137901, -1015423886506852352, 15514534163557086905
Offset: 0

Views

Author

Peter Luschny, Aug 12 2021

Keywords

Comments

This is a signed variant of A000111. The author named the interpolating function of A000111 the 'André function' and the interpolating function of this sequence the 'signed André function'. See the illustrating file in the links section for the definitions.

Crossrefs

Cf. A000111 (unsigned version), A346839 (infinite sum).

Programs

  • Julia
    using Nemo
    CC = ComplexField(80); I = onei(CC); Pi = const_pi(CC)
    A(n) = I*(polylog(-n, -I) - exp(I*Pi*n)*polylog(-n, I)) / exp(I*Pi*n/CC(2))
    [unique_integer(A(CC(n)))[2] for n in 0:24] |> println
  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o+j-1, u-j), j=1..u))
        end:
    a:= n-> (-1)^n*b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 05 2021
  • Mathematica
    a[n_] := I (PolyLog[-n, -I] - Exp[I Pi n] PolyLog[-n, I]) / Exp[I Pi n / 2];
    Table[a[n], {n, 0, 24}]

Formula

log(abs(a(n))) = log(A000111(n)) ~ log(4) + (1/2 + n)*log(2*n/Pi) + ((2/7) - n^2 + 30*n^4 - 360*n^6) / (360*n^5).
E.g.f.: sec(x) - tan(x). - Ilya Gutkovskiy, Aug 12 2021