A346838 a(n) = (PolyLog(-n, -i) - exp(i*Pi*n)*PolyLog(-n, i)) * i / exp(i*Pi*n/2).
1, -1, 1, -2, 5, -16, 61, -272, 1385, -7936, 50521, -353792, 2702765, -22368256, 199360981, -1903757312, 19391512145, -209865342976, 2404879675441, -29088885112832, 370371188237525, -4951498053124096, 69348874393137901, -1015423886506852352, 15514534163557086905
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..485
- Désiré André, Développement de sec x and tan x, C. R. Math. Acad. Sci. Paris, Vol. 88 (1879), pp. 965-979.
- Désiré André, Mémoire sur les permutations alternées, J. Math. Pur. Appl., 7, 167-184, (1881).
- Peter Luschny, Illustrating the André function.
- R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240 [math.CO], 2009.
Programs
-
Julia
using Nemo CC = ComplexField(80); I = onei(CC); Pi = const_pi(CC) A(n) = I*(polylog(-n, -I) - exp(I*Pi*n)*polylog(-n, I)) / exp(I*Pi*n/CC(2)) [unique_integer(A(CC(n)))[2] for n in 0:24] |> println
-
Maple
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(o+j-1, u-j), j=1..u)) end: a:= n-> (-1)^n*b(n, 0): seq(a(n), n=0..25); # Alois P. Heinz, Oct 05 2021
-
Mathematica
a[n_] := I (PolyLog[-n, -I] - Exp[I Pi n] PolyLog[-n, I]) / Exp[I Pi n / 2]; Table[a[n], {n, 0, 24}]
Formula
log(abs(a(n))) = log(A000111(n)) ~ log(4) + (1/2 + n)*log(2*n/Pi) + ((2/7) - n^2 + 30*n^4 - 360*n^6) / (360*n^5).
E.g.f.: sec(x) - tan(x). - Ilya Gutkovskiy, Aug 12 2021
Comments