A346864 Irregular triangle read by rows in which row n lists the row A014105(n) of A237591, n >= 1.
2, 1, 6, 2, 1, 1, 11, 4, 3, 1, 1, 1, 19, 6, 4, 2, 2, 1, 1, 1, 28, 10, 5, 3, 3, 2, 1, 1, 1, 1, 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1, 53, 18, 10, 5, 4, 3, 3, 2, 1, 2, 1, 1, 1, 1, 69, 23, 12, 7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 86, 29, 15, 9, 6, 5, 4, 2, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 2, 1; 6, 2, 1, 1; 11, 4, 3, 1, 1, 1; 19, 6, 4, 2, 2, 1, 1, 1; 28, 10, 5, 3, 3, 2, 1, 1, 1, 1; 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1; 53, 18, 10, 5, 4, 3, 3, 2, 1, 2, 1, 1, 1, 1; 69, 23, 12, 7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1; 86, 29, 15, 9, 6, 5, 4, 2, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1; ... Illustration of initial terms: Column h gives the n-th second hexagonal number (A014105). Column S gives the sum of the divisors of the second hexagonal numbers which equals the area (and the number of cells) of the associated diagram. -------------------------------------------------------------------------------------- n h S Diagram -------------------------------------------------------------------------------------- _ _ _ _ | | | | | | | | _ _|_| | | | | | | 1 3 4 |_ _|1 | | | | | | 2 | | | | | | _ _| | | | | | | _ _| | | | | _ _|_| | | | | | _|1 | | | | _ _ _ _ _| | 1 | | | | 2 10 18 |_ _ _ _ _ _|2 | | | | 6 _ _ _ _|_| | | | | | | _| | | | | _| | | _ _|_| | | _ _| _|1 | | |_ _ _|1 1 | | | 3 _ _ _ _ _ _ _| | |4 | _ _ _ _ _ _| _ _ _ _ _ _ _ _ _ _ _| | | 3 21 32 |_ _ _ _ _ _ _ _ _ _ _| _ _| | 11 | | _| _ _| | | _ _| _| _ _| _| | _|1 _ _ _| _ _|1 1 | | 2 | _ _ _ _|2 | | 4 | | | |6 | | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | 4 36 91 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| 19 .
Programs
-
PARI
row(n) = my(m=n*(2*n + 1)); vector((sqrtint(8*m+1)-1)\2, k, ceil((m+1)/k - (k+1)/2) - ceil((m+1)/(k+1) - (k+2)/2)); \\ Michel Marcus, Jan 12 2025
Comments