cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346870 Sum of all divisors, except the smallest and the largest of every number, of the first n positive even numbers.

Original entry on oeis.org

0, 2, 7, 13, 20, 35, 44, 58, 78, 99, 112, 147, 162, 189, 230, 260, 279, 333, 354, 403, 456, 495, 520, 595, 637, 682, 747, 810, 841, 948, 981, 1043, 1120, 1177, 1250, 1372, 1411, 1474, 1563, 1668, 1711, 1850, 1895, 1986, 2129, 2204, 2253, 2408, 2480, 2596, 2709, 2814
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

Partial sums of the even-indexed terms of Chowla's function A048050.
a(n) has a symmetric representation.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          a(n-1)+numtheory[sigma](2*n)-1-2*n)
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 19 2021
  • Mathematica
    s[n_] := DivisorSigma[1, 2*n] - 2*n - 1; Accumulate @ Array[s, 50] (* Amiram Eldar, Aug 19 2021 *)
  • Python
    from sympy import divisors
    from itertools import accumulate
    def A346880(n): return sum(divisors(2*n)[1:-1])
    def aupton(nn): return list(accumulate(A346880(n) for n in range(1, nn+1)))
    print(aupton(52)) # Michael S. Branicky, Aug 19 2021
    
  • Python
    from math import isqrt
    def A346870(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n*(n+2) # Chai Wah Wu, Nov 02 2023

Formula

a(n) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, May 15 2023