A346876 Irregular triangle read by rows in which row n is the "n-th even perfect number" row of A237591, n >= 1.
4, 1, 1, 15, 5, 3, 2, 1, 1, 1, 249, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4065, 1355, 678, 407, 271, 194, 146, 113, 91, 75, 62, 52, 45, 40, 34, 30, 27, 25, 22, 19, 19, 16, 15, 14, 13, 12, 12, 10, 10, 9, 9, 8, 8, 7
Offset: 1
Examples
Triangle begins: 4, 1, 1; 15, 5, 3, 2, 1, 1,1; 249,83,42,25,17,13,9,7,6,5,5,3,4,2,3,2,2,2,2,2,1,2,1,2,1,1,1,1,1,1,1; ... Illustration of initial terms: Column P gives the even perfect numbers (A000396 assuming there are no odd perfect numbers). Column S gives A139256, the sum of the divisors of the even perfect numbers equals the area (and the number of cells) of the associated diagram. ------------------------------------------------------------------------- n P S Diagram: 1 2 ------------------------------------------------------------------------- _ _ | | | | | | | | _ _| | | | | _| | | _ _ _| _| | | 1 6 12 |_ _ _ _| 1 | | 4 1 | | | | | | | | | | | | | | _ _ _ _ _| | | _ _ _ _ _| | | _ _| | _ _| _ _| | _| _| _| | _|1 1 _ _ _| | 1 | _ _ _|2 | | 3 | | | |5 _ _ _ _ _ _ _ _ _ _ _ _ _ _| | 2 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| 15 . For n = 3, P = 496, the diagram is too large to include here. To draw that diagram note that the lengths of the line segments of the smallest Dyck path are [248, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 248] and the lengths of the line segments of the largest Dyck path are [249, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 249].
Links
- Michel Marcus, Table of n, a(n) for n = 1..8359 (rows 1..5).
Programs
-
PARI
row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i); row(n) = {my(orow = concat(row235791(n), 0)); vector(#orow -1, i, orow[i] - orow[i+1]); } \\ A237591 tabf(nn) = {for (n=1, nn, my(p=prime(n)); if (isprime(2^n-1), print(row(2^(n-1)*(2^n-1)));););} tabf(7) \\ Michel Marcus, Aug 31 2021
Extensions
More terms from Michel Marcus, Aug 31 2021
Name edited by Michel Marcus, Jun 16 2023
Comments