cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346517 Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k} into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 3, 3, 5, 15, 9, 5, 9, 15, 52, 31, 18, 18, 31, 52, 203, 120, 70, 40, 70, 120, 203, 877, 514, 299, 172, 172, 299, 514, 877, 4140, 2407, 1393, 801, 457, 801, 1393, 2407, 4140, 21147, 12205, 7023, 4025, 2295, 2295, 4025, 7023, 12205, 21147
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2021

Keywords

Comments

Also number A(n,k) of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..k} prime(i) into distinct factors; A(2,2) = 5: 2*3*6, 4*9, 3*12, 2*18, 36.

Examples

			A(2,2) = 5: 1122, 11|22, 1|122, 112|2, 1|12|2.
Square array A(n,k) begins:
    1,    1,    2,     5,    15,     52,    203,     877, ...
    1,    1,    3,     9,    31,    120,    514,    2407, ...
    2,    3,    5,    18,    70,    299,   1393,    7023, ...
    5,    9,   18,    40,   172,    801,   4025,   21709, ...
   15,   31,   70,   172,   457,   2295,  12347,   70843, ...
   52,  120,  299,   801,  2295,   6995,  40043,  243235, ...
  203,  514, 1393,  4025, 12347,  40043, 136771,  875936, ...
  877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, ...
  ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000110, A087648, A322773, A322774, A346897, A346898, A346899, A346900, A346901, A346902, A346903.
Main diagonal gives A094574.
First upper (or lower) diagonal gives A322771.
Second upper (or lower) diagonal gives A322772.
Antidiagonal sums give A346518.

Programs

  • Maple
    g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
         `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
            g(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
    A:= (n, k)-> g(p(n)*p(k)$2):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; `if`(n
    				
  • Mathematica
    (* Q is A322770 *)
    Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
    A[n_, k_] := Q[Abs[n-k], Min[n, k]];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Aug 19 2021 *)

Formula

A(n,k) = A045778(A002110(n)*A002110(k)).
A(n,k) = A(k,n).
A(n,k) = A322770(abs(n-k),min(n,k)).

A346881 Number of partitions of the (n+4)-multiset {1,2,...,n,1,2,3,4}.

Original entry on oeis.org

15, 36, 92, 249, 712, 3274, 16601, 91226, 537813, 3376696, 22451030, 157351792, 1158085539, 8921446554, 71736592681, 600613793322, 5224699647616, 47130663392158, 440121213096745, 4248057380997578, 42319698380927573, 434577434511268764, 4594614286246088158
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..4} prime(i).

Crossrefs

Column (or row) k=4 of A346500.
Cf. A346897.
Showing 1-2 of 2 results.