A346935
a(n) = Sum_{d|n} mu(n/d) * binomial(4*d,d) / (3*d+1).
Original entry on oeis.org
1, 3, 21, 136, 968, 7059, 53819, 420592, 3362238, 27342916, 225568797, 1882926144, 15875338989, 134993712777, 1156393242330, 9969937070688, 86445222719723, 753310719641286, 6594154339031799, 57956002304003096, 511238042454487704, 4524678117713613419, 40166643855158315819
Offset: 1
-
Table[Sum[MoebiusMu[n/d] Binomial[4 d, d]/(3 d + 1), {d, Divisors[n]}], {n, 23}]
A346936
a(n) = Sum_{d|n} mu(n/d) * binomial(5*d,d) / (4*d+1).
Original entry on oeis.org
1, 4, 34, 280, 2529, 23712, 231879, 2330160, 23950320, 250540836, 2658968129, 28558319744, 309831575759, 3390416555996, 37377257156716, 414741861215840, 4628362722856424, 51912988232308104, 584909606696793884, 6617078646710069720, 75134301594081157746, 855968478539048248916
Offset: 1
-
Table[Sum[MoebiusMu[n/d] Binomial[5 d, d]/(4 d + 1), {d, Divisors[n]}], {n, 22}]
A346937
a(n) = Sum_{d|n} mu(n/d) * binomial(6*d,d) / (5*d+1).
Original entry on oeis.org
1, 5, 50, 500, 5480, 62776, 749397, 9203128, 115607259, 1478308780, 19180049927, 251857056364, 3340843549854, 44700484300317, 602574657421585, 8175951649914160, 111572030260242089, 1530312970224714489, 21085148778264281864, 291705220703240850760, 4050527291832419432577
Offset: 1
-
Table[Sum[MoebiusMu[n/d] Binomial[6 d, d]/(5 d + 1), {d, Divisors[n]}], {n, 21}]
A346938
a(n) = Sum_{d|n} mu(n/d) * binomial(7*d,d) / (6*d+1).
Original entry on oeis.org
1, 6, 69, 812, 10471, 141702, 1997687, 28988856, 430321563, 6503342378, 99726673129, 1547847703500, 24269405074739, 383846166714410, 6116574500850339, 98106248277869040, 1582638261961640246, 25661404527359789034, 417980115131315136399, 6836064539918615002932
Offset: 1
-
Table[Sum[MoebiusMu[n/d] Binomial[7 d, d]/(6 d + 1), {d, Divisors[n]}], {n, 20}]
A346939
a(n) = Sum_{d|n} mu(n/d) * binomial(8*d,d) / (7*d+1).
Original entry on oeis.org
1, 7, 91, 1232, 18277, 285285, 4638347, 77650784, 1329890613, 23190011435, 410333440535, 7349042707872, 132969010888279, 2426870701777445, 44627576949345735, 826044435331747776, 15378186970730687399, 287756293702214647875, 5409093674555090316299, 102094541350713952736608
Offset: 1
-
Table[Sum[MoebiusMu[n/d] Binomial[8 d, d]/(7 d + 1), {d, Divisors[n]}], {n, 20}]
A380551
G.f. A(x) satisfies x = Sum_{n>=1} A( x^n*(1-x)^(2*n) ).
Original entry on oeis.org
1, 1, 6, 28, 142, 720, 3875, 21288, 120168, 690546, 4032014, 23840724, 142498691, 859512043, 5225263875, 31983651216, 196947587822, 1219199232294, 7583142491924, 47365473951152, 296983176365613, 1868545308601424, 11793499763070479, 74650344221104632, 473770694965305205, 3014124873709172435
Offset: 1
G.f.: A(x) = x + x^2 + 6*x^3 + 28*x^4 + 142*x^5 + 720*x^6 + 3875*x^7 + 21288*x^8 + 120168*x^9 + 690546*x^10 + ...
where x = Sum_{n>=1} A( x^n*(1-x)^(2*n) ).
RELATED SERIES.
Sum_{n>=1} a(n) * x^n/(1-x^n) = x + 2*x^2 + 7*x^3 + 30*x^4 + 143*x^5 + 728*x^6 + 3876*x^7 + 21318*x^8 + ... + A006013(n)*x^(n+1) + ...
which equals x*F(x)^2 where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
-
\\ As the Moebius transform of A006013 \\
{a(n) = sumdiv(n,d, moebius(n/d) * binomial(3*d-1,d-1)*2/(3*d-1) )}
for(n=1,30,print1(a(n),", "))
-
\\ By definition x = Sum_{n>=1} A( x^n*(1-x)^(2*n) ) \\
{a(n) = my(V=[0,1]); for(i=0,n, V = concat(V,0); A = Ser(V);
V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1-x)^(2*m) +x*O(x^#V)) ),#V-1)); V[n+1]}
for(n=1,30,print1(a(n),", "))
Showing 1-6 of 6 results.
Comments