cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346941 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^cos(x).

Original entry on oeis.org

1, 1, 4, 15, 90, 555, 4815, 41034, 443268, 4977381, 64274655, 857332366, 13328296014, 207666642131, 3620701556017, 65845797790798, 1294049887432888, 26168756518235801, 576107273399556987, 12940593913711504118, 311924384689270232770, 7752903433736003497447, 203126367130952306670541
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2021

Keywords

Crossrefs

Programs

  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^cos(x))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(cos(x)*sum(k=1, N, sigma(k)*x^k/k))))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(cos(x)*sum(k=1, N, x^k/(k*(1-x^k))))))

Formula

E.g.f.: exp( cos(x) * Sum_{k>=1} sigma(k)*x^k/k ).
E.g.f.: exp( cos(x) * Sum_{k>=1} x^k/(k*(1 - x^k)) ).