cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346953 a(n) is the number of divisors of A346950(n) ending with 3.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

a(n) = 1 if A346950(n) = k^2 where k is either a prime ending with 3 or the product of a prime ending with 7 and a prime ending with 9. - Robert Israel, Nov 03 2024

Examples

			a(17) = 4 since there are 4 divisors of A346950(17) = 429 ending with 3: 3, 13, 33 and 143.
		

Crossrefs

Cf. A000005, A017377, A346388 (ending with 5), A346389 (ending with 6), A346950, A346951, A346952.

Programs

  • Maple
    N:= 10000: # for a(1) .. a(M) where the last term of A346950 less than N is A346950(M)
    S:= {}:
    for n from 3 to floor(sqrt(N)) by 10 do
      S:= S union map(`*`, {seq(i,i= n .. floor(N/n), 10)},n)
    od:
    S:= sort(convert(S,list)):
    map(t -> nops(select(t -> t mod 10 = 3, numtheory:-divisors(t))), S); # Robert Israel, Nov 03 2024
  • Mathematica
    b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[b], AppendTo[b, 10*n+9]]]]; (* A346950 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==3&)]]]]]; a
  • Python
    from sympy import divisors
    def f(n): return sum(d%10 == 3 for d in divisors(n)[1:-1])
    def A346950upto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
    print(list(map(f, A346950upto(2129)))) # Michael S. Branicky, Aug 11 2021