cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346969 1 together with the square array T(n,k) read by upward antidiagonals in which T(n, k), n >= 1, is the n-th odd number j >= 3 such that the symmetric representation of sigma of j has k >= 2 parts.

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 21, 11, 25, 27, 63, 13, 35, 33, 81, 147, 17, 45, 39, 99, 171, 357, 19, 49, 51, 117, 189, 399, 903, 23, 77, 55, 153, 207, 441, 987, 2499, 29, 91, 57, 165, 243, 483, 1029, 2709, 6069, 31, 121, 65, 195, 261, 513, 1113, 2793, 6321, 13915, 37, 135, 69, 231, 275, 567, 1197, 2961, 6325, 14847, 29095
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 06 2021

Keywords

Comments

This sequence is a permutation of the odd positive integers.
The first row of table T(n,k) preceded by a(1) = 1 is A239663; the first column is the sequence A065091 of odd primes; the second column contains the squares of the odd primes as a subsequence (see also A247687).

Examples

			The 10x10 initial submatrix of table T(n,k):
n\k | 2   3    4    5     6     7     8      9      10     11  ...
------------------------------------------------------------------
  1 | 3   9    21   63    147   357   903    2499   6069   13915
  2 | 5   15   27   81    171   399   987    2709   6321   14847
  3 | 7   25   33   99    189   441   1029   2793   6325   15125
  4 | 11  35   39   117   207   483   1113   2961   6783   15141
  5 | 13  45   51   153   243   513   1197   3025   6875   15351
  6 | 17  49   55   165   261   567   1239   3087   6909   15729
  7 | 19  77   57   195   275   609   1265   3249   7011   16023
  8 | 23  91   65   231   279   621   1281   3339   7203   16611
  9 | 29  121  69   255   297   651   1375   3381   7353   16779
  10| 31  135  75   273   333   729   1407   3591   7581   17157
   ...
a(9) = 25 = T(3,3) since only 9 and 15 are smaller odd numbers whose symmetric representation of sigma consists of three parts. All 3 parts of the symmetric representation of sigma for 9 and for 25 have width 1 while the center part for that of 15 has width 2.
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    sArray[b_, pMax_] := Module[{list=Table[{}, pMax+1], i, p}, For[i=3, i<=b, i+=2, p=Length[Select[SplitBy[a341969[i], #!=0&], #[[1]]!=0&]]; If[p<=pMax+1&&Length[list[[p]]]