A347026 Irregular triangle read by rows in which row n lists the first n odd numbers, followed by the first n odd numbers in decreasing order.
1, 1, 1, 3, 3, 1, 1, 3, 5, 5, 3, 1, 1, 3, 5, 7, 7, 5, 3, 1, 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 15, 13, 11, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 17, 15, 13, 11, 9, 7, 5, 3, 1
Offset: 1
Examples
Triangle begins: 1, 1; 1, 3, 3, 1; 1, 3, 5, 5, 3, 1; 1, 3, 5, 7, 7, 5, 3, 1; 1, 3, 5, 7, 9, 9, 7, 5, 3, 1; 1, 3, 5, 7, 9, 11, 11, 9, 7, 5, 3, 1; 1, 3, 5, 7, 9, 11, 13, 13, 11, 9, 7, 5, 3, 1; 1, 3, 5, 7, 9, 11, 13, 15, 15, 13, 11, 9, 7, 5, 3, 1; ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Eddie Gutierrez, A Novel Method for Multiplying Large Numbers.
- Eddie Gutierrez, The Column Addition Triangle (CAT)-A Pascal Analog (Part I).
- Eddie Gutierrez, The Column Addition Triangle (CAT) and Polynomials.
Crossrefs
Programs
-
C
#include
int main() { int n, k; for (n=1; n<=13; n++) { for (k=1; k<=n; k++) { printf("%d ", 2*k - 1); } for (k=n+1; k<=2*n; k++) { printf("%d ", 4*n - 2*k + 1); } printf("\n"); } return 0; } -
Mathematica
Array[Join[#, Reverse[#]] &@Range[1, 2 # - 1, 2] &, 9] // Flatten (* Michael De Vlieger, Aug 18 2021 *) Flatten[Table[Join[Range[1,2n+1,2],Range[2n+1,1,-2]],{n,0,10}]] (* Harvey P. Dale, Aug 31 2024 *)
-
PARI
row(n) = n*=2; vector(n, k, min(2*k-1, 2*(n-k)+1)); \\ Michel Marcus, Aug 17 2021
Formula
T(n,k) = 2k - 1 for 1 <= k <= n,
4n - 2k + 1 for n+1 <= k <= 2n.
Extensions
Better definition from Omar E. Pol, Aug 14 2021
Comments