A347048 Number of even-length ordered factorizations of n with integer alternating product.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 0, 7, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 6, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 11, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 1, 1, 0, 0, 0, 6, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 8, 0, 1, 1, 7, 0, 0, 0, 1, 0
Offset: 1
Keywords
Examples
The a(n) ordered factorizations for n = 16, 32, 36, 48, 64, 96: 4*4 8*4 6*6 12*4 8*8 24*4 8*2 16*2 12*3 24*2 16*4 48*2 2*2*2*2 2*2*4*2 18*2 2*2*6*2 32*2 3*2*8*2 4*2*2*2 2*2*3*3 3*2*4*2 2*2*4*4 4*2*6*2 2*3*3*2 4*2*3*2 2*2*8*2 6*2*4*2 3*2*2*3 6*2*2*2 2*4*4*2 8*2*3*2 3*3*2*2 4*2*2*4 12*2*2*2 4*2*4*2 2*2*12*2 4*4*2*2 8*2*2*2 2*2*2*2*2*2
Links
Crossrefs
Positions of 0's are A005117 \ {2}.
The restriction to powers of 2 is A027306.
Positions of 3's appear to be A030514.
Positions of 1's are 1 and A082293.
The odd-length version is A347049.
Allowing any length gives A347463.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
Programs
-
Mathematica
ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[ordfacs[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
-
PARI
A347048(n, m=n, ap=1, e=0) = if(1==n,!(e%2) && 1==numerator(ap), sumdiv(n, d, if(d>1, A347048(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
Extensions
Data section extended up to a(105) by Antti Karttunen, Jul 28 2024
Comments