A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1
Keywords
Examples
The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72: 4 12 24 30 36 48 60 64 72 2*2 2*6 3*8 5*6 4*9 6*8 2*30 8*8 8*9 3*4 4*6 2*15 6*6 2*24 3*20 2*32 2*36 2*2*3 2*12 3*10 2*18 3*16 4*15 4*16 3*24 2*2*6 2*3*5 3*12 4*12 5*12 2*4*8 4*18 2*3*4 2*2*9 2*3*8 6*10 2*2*16 6*12 2*3*6 2*4*6 2*5*6 2*2*4*4 2*4*9 3*3*4 3*4*4 3*4*5 2*6*6 2*2*3*3 2*2*12 2*2*15 3*3*8 2*2*3*4 2*3*10 3*4*6 2*2*3*5 2*2*18 2*3*12 2*2*3*6 2*3*3*4 2*2*2*3*3 The a(270) = 19 factorizations: (2*3*5*9) (5*6*9) (3*90) (270) (3*3*5*6) (2*3*45) (5*54) (2*3*3*15) (2*5*27) (6*45) (2*9*15) (9*30) (3*3*30) (10*27) (3*5*18) (15*18) (3*6*15) (2*135) (3*9*10) Note that (2*3*3*3*5) is separable but has no alternating permutations.
Comments