A347060 Total number of 1's in the binary expansion of parts in all partitions of n into distinct parts.
0, 1, 1, 4, 4, 7, 11, 15, 20, 28, 39, 48, 64, 80, 104, 134, 167, 203, 257, 311, 381, 470, 566, 680, 820, 981, 1168, 1394, 1650, 1946, 2300, 2700, 3161, 3705, 4315, 5026, 5845, 6769, 7827, 9049, 10424, 11992, 13784, 15801, 18088, 20702, 23620, 26922, 30665
Offset: 0
Examples
a(5) = 7 counts the 1's in [101], [100, 1], [11, 10].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
h:= proc(n) option remember; add(i, i=Bits[Split](n)) end: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(n>i*(i+1)/2, 0, b(n, i-1)+(p-> p+ [0, p[1]*h(i)])(b(n-i, min(n-i, i-1))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..60);