cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332844 Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s).

Original entry on oeis.org

1, 3, 4, 8, 6, 12, 8, 18, 14, 18, 12, 32, 14, 24, 24, 39, 18, 42, 20, 48, 32, 36, 24, 72, 32, 42, 44, 64, 30, 72, 32, 81, 48, 54, 48, 112, 38, 60, 56, 108, 42, 96, 44, 96, 84, 72, 48, 156, 58, 96, 72, 112, 54, 132, 72, 144, 80, 90, 60, 192, 62, 96, 112, 166, 84
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2020

Keywords

Crossrefs

Cf. A000005, A000010, A000203, A010052, A046951, A076752 (Mobius transf.), A124315, A206369, A344442, A347090 (Dirichlet inverse).

Programs

  • Mathematica
    Table[Sum[Boole[IntegerQ[(n/d)^(1/2)]] DivisorSigma[1, d], {d, Divisors[n]}], {n, 1, 65}]
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] (EllipticTheta[3, 0, x^k] - 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := (2*p^(e + 3) - e*p^2 + e - If[OddQ[e], 3*p^2 - 1, 2*p^2 + 2*p - 2])/(2*(p - 1)*(p^2 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, May 25 2025 *)
  • PARI
    A332844(n) = sumdiv(n,d, issquare(n/d) * sigma(d)); \\ Antti Karttunen, May 23 2021

Formula

G.f.: Sum_{k>=1} sigma(k) * (theta_3(x^k) - 1) / 2.
a(n) = Sum_{d|n} A076752(d).
a(n) = Sum_{d|n} A206369(n/d) * tau(d).
a(n) = Sum_{d|n} A010052(n/d) * sigma(d).
a(n) = Sum_{d|n} A124315(n/d) * phi(d).
a(n) = Sum_{d|n} A046951(n/d) * d.
a(p) = p + 1, where p is prime.
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 1080. - Vaclav Kotesovec, Feb 26 2020
Multiplicative with a(p^e) = (2*p^(e+3) - e*p^2 + e - 3*p^2 + 1)/(2*(p-1)*(p^2-1)) if e is odd, and (2*p^(e+3) - e*p^2 + e - 2*p^2 - 2*p + 2)/(2*(p-1)*(p^2-1)) if e is even. - Amiram Eldar, May 25 2025

A347091 Sum of A332844 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 24, 0, 21, 16, 36, 0, 28, 0, 48, 48, 37, 0, 36, 0, 42, 64, 72, 0, 60, 36, 84, 48, 56, 0, 0, 0, 81, 96, 108, 96, 114, 0, 120, 112, 90, 0, 0, 0, 84, 72, 144, 0, 164, 64, 84, 144, 98, 0, 120, 144, 120, 160, 180, 0, 216, 0, 192, 96, 166, 168, 0, 0, 126, 192, 0, 0, 258, 0, 228, 112, 140, 192, 0, 0, 246, 132
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2021

Keywords

Comments

No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA332844(n) = sumdiv(n,d, issquare(n/d) * sigma(d));
    v347090 = DirInverseCorrect(vector(up_to,n,A332844(n)));
    A347090(n) = v347090[n];
    A347091(n) = (A332844(n)+A347090(n));

Formula

a(n) = A332844(n) + A347090(n).
For n > 1, a(n) = -Sum_{d|n, 1A332844(d) * A347090(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A332844(A030229(n)).
Showing 1-2 of 2 results.