cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347095 Sum of Pillai's arithmetical function (A018804) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 30, 0, 21, 25, 54, 0, 35, 0, 78, 90, 49, 0, 51, 0, 63, 130, 126, 0, 95, 81, 150, 85, 91, 0, 0, 0, 113, 210, 198, 234, 172, 0, 222, 250, 171, 0, 0, 0, 147, 153, 270, 0, 235, 169, 147, 330, 175, 0, 231, 378, 247, 370, 342, 0, 405, 0, 366, 221, 257, 450, 0, 0, 231, 450, 0, 0, 424, 0, 438, 245, 259, 546
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2021

Keywords

Comments

No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA018804(n)));
    A101035(n) = v101035[n];
    A347095(n) = (A018804(n)+A101035(n));

Formula

a(n) = A018804(n) + A101035(n).
For n > 1, a(n) = -Sum_{d|n, 1A018804(d) * A101035(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A018804(A030229(n)).