A382125 G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
1, 3, 15, 52, 180, 555, 1696, 4809, 13410, 35844, 93771, 238305, 594403, 1449441, 3476607, 8190824, 19015548, 43492230, 98197506, 218885763, 482337864, 1051051262, 2266904481, 4840955055, 10242621395, 21479302368, 44666897613, 92139573135, 188617118541, 383280793962, 773395096907
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 15*x^2 + 52*x^3 + 180*x^4 + 555*x^5 + 1696*x^6 + 4809*x^7 + 13410*x^8 + 35844*x^9 + 93771*x^10 + ... where A(x) = exp(3*x + 21*x^2/2 + 48*x^3/3 + 105*x^4/4 + 108*x^5/5 + 336*x^6/6 + 192*x^7/7 + 465*x^8/8 + 507*x^9/9 + 756*x^10/10 + ... + sigma(n)*sigma(2*n)*x^n/n + ...). RELATED SERIES. A(x)^(1/3) = 1 + x + 4*x^2 + 9*x^3 + 22*x^4 + 44*x^5 + 105*x^6 + 200*x^7 + 425*x^8 + 825*x^9 + 1634*x^10 + ... + A382124(n)*x^n + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
nmax=30; CoefficientList[Series[Exp[Sum[DivisorSigma[1,n]DivisorSigma[1,2*n] * x^n/n ,{n,nmax}]],{x,0,nmax}],x] (* Stefano Spezia, Apr 06 2025 *)
-
PARI
{a(n) = my(A = exp( sum(m=1,n, sigma(m)*sigma(2*m)*x^m/m ) +x*O(x^n) )); polcoef(A,n)} for(n=0,30, print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ).
(2) A(x) = exp( Sum_{n>=1} Sum_{k>=1} sigma(2*n*k) * x^(n*k) / n ).
(3) a(n) = (1/n) * Sum_{k=1..n} sigma(k)*sigma(2*k) * a(n-k) for n>0, with a(0) = 1.
Comments