cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A347306 When k appears in A347113, or -1 if k never appears.

Original entry on oeis.org

1, 8, 11, 2, 7, 9, 20, 12, 15, 3, 28, 13, 19, 10, 16, 21, 37, 17, 51, 23, 27, 4, 53, 24, 33, 14, 29, 34, 47, 25, 101, 30, 38, 22, 43, 31, 116, 18, 44, 39, 58, 45, 63, 48, 52, 5, 99, 49, 59, 54, 68, 60, 81, 55, 64, 50, 73, 35, 136, 56, 146, 26, 65, 69, 72, 66, 159, 74, 77, 70, 153
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2021

Keywords

Comments

It is conjectured that every positive number appears in A347113. - N. J. A. Sloane, Nov 08 2021

Crossrefs

Cf. A347113.

Programs

  • Mathematica
    With[{s = Import["https://oeis.org/A347113/b347113.txt", "Data"][[All, -1]]}, Array[FirstPosition[s, #][[1]] &, 71]] (* Michael De Vlieger, Sep 01 2021 *)
  • Python
    from math import gcd
    def A347306(n):
        if n == 1:
            return 1
        i, j, nset, m = 1, 2, {1}, 2
        while True:
            k = m
            i += 1
            while k == j or gcd(k,j) == 1 or k in nset:
                k += 1
            if k == n:
                return i
            j = k+1
            nset.add(k)
            while m in nset:
                m += 1 # Chai Wah Wu, Sep 02 2021

A347307 Records in A347113.

Original entry on oeis.org

1, 4, 10, 22, 46, 94, 118, 166, 334, 358, 718, 1438, 2878, 5758, 8158, 8254, 9838, 19678, 22558, 43198, 56638, 103198, 169438, 184798, 190558, 193918, 274558, 315358, 318238, 357598, 419038, 439678, 486238, 698398, 858238, 1716478, 1723198, 1965118, 2029438, 4058878
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2021

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    A347307_list, nset, m, c, j = [1], {1}, 2, 0, 2
    for _ in range(10**4):
        k = m
        while k == j or gcd(k,j) == 1 or k in nset:
            k += 1
        if k > c:
            c = k
            A347307_list.append(k)
        j = k + 1
        nset.add(k)
        while m in nset:
            m += 1 # Chai Wah Wu, Sep 01 2021

Extensions

a(23)-a(40) from Alois P. Heinz, Sep 01 2021

A347313 Index of prime(n) in A347113, or -1 if that prime never appears.

Original entry on oeis.org

8, 11, 7, 20, 28, 19, 37, 51, 53, 47, 101, 116, 58, 63, 99, 81, 136, 146, 159, 153, 115, 213, 176, 197, 302, 151, 215, 223, 169, 230, 276, 274, 255, 188, 233, 318, 440, 341, 347, 359, 369, 282, 386, 396, 405, 520, 638, 460, 472, 698, 357, 492, 507, 514, 529, 535, 558, 702
Offset: 1

Views

Author

N. J. A. Sloane, Sep 06 2021

Keywords

Comments

Conjecture: every prime appears in A347113 (every number, in fact).
The graph shows three three strong lines (and many other points). Can the primes on the three lines be described in a simple way?

Crossrefs

Cf. A347113.

Programs

  • Python
    from math import gcd
    from sympy import prime
    def A347313(n):
        p = prime(n)
        i, j, nset, m = 1, 2, {1}, 2
        while True:
            k = m
            i += 1
            while k == j or gcd(k,j) == 1 or k in nset:
                k += 1
            if k == p:
                return i
            j = k+1
            nset.add(k)
            while m in nset:
                m += 1 # Chai Wah Wu, Sep 06 2021

A348779 Primes in A347113 in order of appearance.

Original entry on oeis.org

5, 2, 3, 13, 7, 11, 17, 29, 19, 23, 41, 43, 53, 47, 31, 73, 37, 59, 61, 101, 71, 67, 109, 83, 139, 89, 79, 103, 107, 113, 149, 137, 131, 127, 181, 97, 151, 163, 167, 233, 173, 179, 191, 193, 197, 281, 157, 293, 223, 227, 239, 241, 251, 199, 257, 263, 349, 269, 283, 277, 401, 409, 311, 421, 211, 313
Offset: 1

Views

Author

N. J. A. Sloane, Nov 13 2021

Keywords

Comments

From Michael De Vlieger, Nov 13 2021: (Start)
Let s = A347113, j = s(n-1)+1 and k = s(n). Prime k|j = q such that j/q = p, p < q, both primes, in all cases except the first 3, i.e., s(7), s(8), and s(11), with (j, k) = {(95, 5), (6, 2), (15, 3)} respectively.
In other words, squarefree semiprime j = pq, p < q, yields k = q outside of the first 3 primes in s. Are all prime s(n), n > 219 in this category?
Prime k implies k | j, since k = j is not permitted in s, k < j.
There is 1 instance of composite k | j, i.e., s(33) = 25, with j = 75. Are there any others?
The reverse relation j to k is that j is the product of at least one prime divisor p | k and at least one prime q that does not divide k. When k is prime p, j = pq.
Contains local minima in s aside from s(1). A consequence of forbidden j = k in s is that local minima are nonadjacent.
(End)

Crossrefs

Cf. A347113.

Programs

A347756 Local minima in A347113.

Original entry on oeis.org

1, 2, 3, 7, 11, 17, 19, 23, 31, 37, 59, 61, 67, 79, 97, 151, 157, 199, 211, 229, 271, 307, 337, 367, 499, 577, 601, 619, 691, 727, 829, 877, 937, 1009, 1237, 1279, 1297, 1399, 1459, 1531, 1609, 1657, 1867, 2011, 2029, 2089, 2131, 2137, 2179, 2281, 2311, 2467, 2539
Offset: 1

Views

Author

Michael De Vlieger, Sep 12 2021

Keywords

Comments

Distinct terms in A347755.
Conjecture: subset of A008578.

Crossrefs

Programs

  • Mathematica
    Block[{nn = 2^13, a = {1}, c, k, m, u = 2, v}, v = a; Map[Set[c[#], 1] &, Union@ a]; Do[Set[k, u]; If[PrimeQ[#], m = 2; While[IntegerQ[c[m #]], m++]; k = m #, While[Or[IntegerQ[c[k]], k == #, GCD[k, #] == 1], k++]] &[a[[-1]] + 1]; AppendTo[a, k]; Set[c[k], 1]; AppendTo[v, u]; If[k == u, While[IntegerQ[c[u]], u++]], nn]; Union@ v]
    (* or using A347113 bfile: *)
    Block[{a, u = {1}, v = 1}, a = Import["https://oeis.org/A347113/b347113.txt", "Data"][[All, -1]]; Do[If[a[[i]] == v, While[! FreeQ[a[[1 ;; i]], v], v++]]; AppendTo[u, v], {i, Length[a]}];  Union@ u]
  • Python
    from math import gcd
    A347756_list, nset, m, j = [1], {1}, 2, 2
    for _ in range(10**4):
        k = m
        while k == j or gcd(k,j) == 1 or k in nset:
            k += 1
        j = k + 1
        nset.add(k)
        if k == m:
            A347756_list.append(k)
        while m in nset:
            m += 1 # Chai Wah Wu, Sep 13 2021

Formula

A347757(n) = index of a(n) in A347113.

A347308 Indices of records in A347113.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 36, 41, 42, 90, 91, 92, 93, 94, 519, 1044, 1251, 1252, 1422, 2748, 3591, 6528, 10685, 11661, 12028, 12236, 17326, 19899, 20074, 22571, 26429, 27702, 30538, 43975, 54016, 54017, 54229, 61703, 63862, 63863, 127935, 127936, 269513, 297679, 342675
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2021

Keywords

Crossrefs

Programs

  • Python
    from math import gcd
    A347308_list, nset, m, c, j, i = [1], {1}, 2, 0, 2, 1
    for _ in range(10**4):
        i += 1
        k = m
        while k == j or gcd(k,j) == 1 or k in nset:
            k += 1
        if k > c:
            c = k
            A347308_list.append(i)
        j = k + 1
        nset.add(k)
        while m in nset:
            m += 1 # Chai Wah Wu, Sep 01 2021

Extensions

a(23)-a(40) from Alois P. Heinz, Sep 01 2021
a(41)-a(42) from Chai Wah Wu, Sep 01 2021
a(43)-a(45) from Chai Wah Wu, Sep 02 2021

A347755 Least k that does not appear in A347113(m), 1 <= m <= n.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 11, 11, 17, 17, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 0

Views

Author

Michael De Vlieger, Sep 12 2021

Keywords

Comments

a(0) = 1 by definition, since A347113 = 1 by definition of that sequence.
Lower bound on A347113.
Conjecture: all terms are in A008578. This is true for n <= 327680. Let j = A347113(m-1) and k = A347113(m) for k in A347757. For m > 0, k | j.

Examples

			Let b(n) = A347113(n).
a(1) = 2 since b(1) = a(0) = 1.
a(k) = 2 for 1 <= k <= 7 since b(k) > 2.
a(8) = 3 since b(8) = a(7) = 2.
a(k) = 3 for 9 <= k <= 10 since b(k) > 3.
a(11) = 7 since b(11) = a(10) = 3.
a(k) = 7 for 12 <= k <= 17 since b(k) > 7, etc.
		

Crossrefs

Cf. A008578, A347113, A347307, A347756 (distinct terms in this sequence).

Programs

  • Mathematica
    Block[{nn = 71, a = {1}, c, k, m, u = 2, v}, v = a; Map[Set[c[#], 1] &, Union@ a]; Do[Set[k, u]; If[PrimeQ[#], m = 2; While[IntegerQ[c[m #]], m++]; k = m #, While[Or[IntegerQ[c[k]], k == #, GCD[k, #] == 1], k++]] &[a[[-1]] + 1]; AppendTo[a, k]; Set[c[k], 1]; AppendTo[v, u]; If[k == u, While[IntegerQ[c[u]], u++]], nn]; v]
    (* or using A347113 bfile: *)
    Block[{a, u = {1}, v = 1}, a = Import["https://oeis.org/A347113/b347113.txt", "Data"][[All, -1]]; Do[If[a[[i]] == v, While[! FreeQ[a[[1 ;; i]], v], v++]]; AppendTo[u, v], {i, Length[a]}]; u]
  • Python
    from math import gcd
    A347755_list, nset, m, j = [1], {1}, 2, 2
    for _ in range(10**2):
        k = m
        while k == j or gcd(k,j) == 1 or k in nset:
            k += 1
        j = k + 1
        nset.add(k)
        A347755_list.append(m)
        while m in nset:
            m += 1 # Chai Wah Wu, Sep 13 2021

A347757 Indices of local minima in A347113.

Original entry on oeis.org

1, 8, 11, 20, 28, 37, 51, 53, 101, 116, 136, 146, 159, 213, 302, 318, 440, 520, 638, 698, 702, 912, 1031, 1128, 1528, 1758, 1832, 1891, 2107, 2198, 2523, 2671, 2857, 3069, 3760, 3892, 3946, 4256, 4438, 4638, 4880, 5022, 5656, 6092, 6147, 6322, 6470, 6492, 6579
Offset: 1

Views

Author

Michael De Vlieger, Sep 12 2021

Keywords

Comments

a(n)-1 = last instance of A347756(n) in A347755.
a(n+1) > a(n) + 1, since terms in A347113 are distinct by definition.

Crossrefs

Cf. A347113, A347306 (indices of records in A347113), A347755, A347756.

Programs

  • Mathematica
    Block[{nn = 2^13, a = {1}, c, k, m, u = 2, v}, v = a; Map[Set[c[#], 1] &, Union@ a]; Do[Set[k, u]; If[PrimeQ[#], m = 2; While[IntegerQ[c[m #]], m++]; k = m #, While[Or[IntegerQ[c[k]], k == #, GCD[k, #] == 1], k++]] &[a[[-1]] + 1]; AppendTo[a, k]; Set[c[k], 1]; AppendTo[v, u]; If[k == u, While[IntegerQ[c[u]], u++]], nn]; Map[FirstPosition[a, #][[1]] &, Most@ Union@ v]]
    (* or using A347113 bfile: *)
    Block[{a, u = {1}, v = 1}, a = Import["https://oeis.org/A347113/b347113.txt", "Data"][[All, -1]]; Do[If[a[[i]] == v, While[! FreeQ[a[[1 ;; i]], v], v++]]; AppendTo[u, v], {i, Length[a]}]; Map[FirstPosition[a, #][[1]] &, Most@ Union@ u] ]
  • Python
    from math import gcd
    A347757_list, nset, m, j, i = [1], {1}, 2, 2, 1
    for _ in range(10**4):
        i += 1
        k = m
        while k == j or gcd(k,j) == 1 or k in nset:
            k += 1
        j = k + 1
        nset.add(k)
        if k == m:
            A347757_list.append(i)
        while m in nset:
            m += 1 # Chai Wah Wu, Sep 13 2021

A348786 Trajectory of 5 under repeated application of the map x -> A347113(x).

Original entry on oeis.org

5, 46, 86, 77, 69, 64, 55, 54, 50, 56, 60, 52, 45, 42, 334, 335, 321, 297, 284, 267, 247, 237, 221, 203, 192, 382, 746, 1454, 1430, 2858, 2806, 1861, 1860, 1828, 1796, 1772, 1742, 1708, 1687, 1655, 1616, 1590, 1558, 1527, 1496, 1482, 1488, 1464, 1432, 1412, 1404, 1378, 1339, 1320, 1273, 1248
Offset: 1

Views

Author

N. J. A. Sloane, Nov 16 2021

Keywords

Comments

Probably does not cycle, although the graph suggests that it could happen (compare A348785).

Crossrefs

A348787 Indices k such that (8/9)*k < A347113(k) < (5/4)*k.

Original entry on oeis.org

1, 13, 16, 17, 24, 25, 29, 30, 31, 39, 45, 48, 49, 50, 54, 55, 56, 65, 66, 69, 70, 72, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 95, 96, 97, 98, 100, 102, 105, 107, 108, 110, 112, 113, 117, 118, 119, 120, 121, 124, 125, 126, 129, 132, 133, 137, 138, 139, 140, 142, 143, 147, 148, 149, 152, 154, 155, 156, 160
Offset: 1

Views

Author

N. J. A. Sloane, Nov 20 2021

Keywords

Comments

By definition, the points (a(k), A348788(k)) form the main diagonal of A347113. See A348788 for a discussion of this diagonal.

Crossrefs

Showing 1-10 of 33 results. Next