cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347135 a(n) = Sum_{d|n} A001615(n/d) * A069359(d).

Original entry on oeis.org

0, 1, 1, 5, 1, 12, 1, 16, 7, 16, 1, 51, 1, 20, 18, 44, 1, 68, 1, 71, 22, 28, 1, 156, 11, 32, 33, 91, 1, 167, 1, 112, 30, 40, 26, 277, 1, 44, 34, 220, 1, 215, 1, 131, 110, 52, 1, 420, 15, 140, 42, 151, 1, 300, 34, 284, 46, 64, 1, 673, 1, 68, 138, 272, 38, 311, 1, 191, 54, 295, 1, 836, 1, 80, 162, 211, 38, 359, 1, 596
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of A001615 (Dedekind psi function) with A069359.
Dirichlet convolution of A001221 (omega, number of distinct prime factors of n) with A322577.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n,PrimeNu[n/#]*Sum[DirichletConvolve[j,MoebiusMu[j]^2,j,#/d] EulerPhi[d],{d,Divisors[#]}]&],{n,80}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d)); \\ From A069359
    A347135(n) = sumdiv(n,d,A001615(n/d)*A069359(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A069359(d).
a(n) = Sum_{d|n} A001221(n/d) * A322577(d).