cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A322577 a(n) = Sum_{d|n} psi(n/d) * phi(d).

Original entry on oeis.org

1, 4, 6, 11, 10, 24, 14, 28, 26, 40, 22, 66, 26, 56, 60, 68, 34, 104, 38, 110, 84, 88, 46, 168, 74, 104, 102, 154, 58, 240, 62, 160, 132, 136, 140, 286, 74, 152, 156, 280, 82, 336, 86, 242, 260, 184, 94, 408, 146, 296, 204, 286, 106, 408, 220, 392, 228, 232, 118, 660
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 29 2019

Keywords

Comments

Dirichlet convolution of Dedekind psi function (A001615) with Euler totient function (A000010).
Dirichlet convolution of A008966 with A018804.
Dirichlet convolution of A038040 with A271102.

Crossrefs

Cf. A327251 (inverse Möbius transform), A347092 (Dirichlet inverse), A347093 (sum with it), A347135.

Programs

  • Maple
    f:= proc(n) local t;
      mul((t[2]+1)*t[1]^t[2] - (t[2]-1)*t[1]^(t[2]-2), t = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 01 2019
  • Mathematica
    Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, n/d] EulerPhi[d], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e + 1)*p^e - (e - 1)*p^(e - 2); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    seq(n) = {dirmul(vector(n, n, eulerphi(n)), vector(n, n, n * sumdivmult(n, d, issquarefree(d)/d)))} \\ Andrew Howroyd, Aug 29 2019
    
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A322577(n) = sumdiv(n,d,A001615(n/d)*eulerphi(d)); \\ Antti Karttunen, Apr 03 2022

Formula

Dirichlet g.f.: zeta(s-1)^2 / zeta(2*s).
a(p) = 2*p, where p is prime.
Sum_{k=1..n} a(k) ~ 45*n^2*(2*Pi^4*log(n) - Pi^4 + 4*gamma*Pi^4 - 360*zeta'(4)) / (2*Pi^8), where gamma is the Euler-Mascheroni constant A001620 and for zeta'(4) see A261506. - Vaclav Kotesovec, Aug 31 2019
a(p^k) = (k+1)*p^k - (k-1)*p^(k-2) where p is prime. - Robert Israel, Sep 01 2019
a(n) = Sum_{k=1..n} psi(gcd(n,k)). - Ridouane Oudra, Nov 29 2019
a(n) = Sum_{k=1..n} psi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A347132 a(n) = Sum_{d|n} A001615(n/d) * A003415(d), where A003415 is the arithmetic derivative and A001615 is Dedekind psi function.

Original entry on oeis.org

0, 1, 1, 7, 1, 12, 1, 30, 10, 16, 1, 65, 1, 20, 18, 104, 1, 83, 1, 93, 22, 28, 1, 254, 16, 32, 63, 121, 1, 167, 1, 320, 30, 40, 26, 391, 1, 44, 34, 374, 1, 215, 1, 177, 143, 52, 1, 840, 22, 165, 42, 205, 1, 450, 34, 494, 46, 64, 1, 827, 1, 68, 183, 912, 38, 311, 1, 261, 54, 295, 1, 1430, 1, 80, 197, 289, 38, 359
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of Dedekind psi function (A001615) with the arithmetic derivative (A003415).

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, DirichletConvolve[j, MoebiusMu[j]^2, j, n/#]*If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &], {n, 78}] (* Michael De Vlieger, Oct 19 2021, after Jan Mangaldan at A001615 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A347132(n) = sumdiv(n,d,A001615(n/d)*A003415(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A003415(d).

A347133 a(n) = Sum_{d|n} A003415(n/d) * A069359(d).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 6, 1, 2, 0, 16, 0, 2, 2, 24, 0, 19, 0, 20, 2, 2, 0, 72, 1, 2, 9, 24, 0, 40, 0, 80, 2, 2, 2, 111, 0, 2, 2, 96, 0, 48, 0, 32, 25, 2, 0, 256, 1, 29, 2, 36, 0, 117, 2, 120, 2, 2, 0, 244, 0, 2, 29, 240, 2, 64, 0, 44, 2, 56, 0, 446, 0, 2, 31, 48, 2, 72, 0, 352, 54, 2, 0, 308, 2, 2, 2, 168, 0, 304, 2, 56
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of A003415 (arithmetic derivative) with A069359.
Dirichlet convolution of A001221 (omega, number of distinct prime factors of n) with A347131.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A003415(n/d) * A069359(d).
a(n) = Sum_{d|n} A001221(n/d) * A347131(d).

A347134 a(n) = Sum_{d|n} phi(n/d) * A069359(d), where phi is Euler totient function.

Original entry on oeis.org

0, 1, 1, 3, 1, 8, 1, 8, 5, 12, 1, 23, 1, 16, 14, 20, 1, 36, 1, 35, 18, 24, 1, 60, 9, 28, 21, 47, 1, 87, 1, 48, 26, 36, 22, 103, 1, 40, 30, 92, 1, 119, 1, 71, 66, 48, 1, 148, 13, 92, 38, 83, 1, 144, 30, 124, 42, 60, 1, 247, 1, 64, 86, 112, 34, 183, 1, 107, 50, 183, 1, 268, 1, 76, 110, 119, 34, 215, 1, 228, 81, 84
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of A000010 (Euler totient function phi) with A069359.
Dirichlet convolution of A001221 (omega) with A029935 (the convolution square of Euler phi).

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A000010(n/d) * A069359(d)
a(n) = Sum_{d|n} A001221(n/d) * A029935(d).
a(n) = Sum_{k=1..n} A069359(gcd(n,k)). - Antti Karttunen, Oct 17 2021
Showing 1-4 of 4 results.