A347150 Decimal expansion of the Dirichlet eta function at 8.
9, 9, 6, 2, 3, 3, 0, 0, 1, 8, 5, 2, 6, 4, 7, 8, 9, 9, 2, 2, 7, 2, 8, 9, 2, 6, 0, 0, 8, 2, 8, 0, 3, 6, 1, 7, 8, 7, 4, 1, 2, 5, 1, 5, 9, 4, 7, 2, 8, 9, 8, 0, 6, 7, 0, 4, 5, 2, 8, 9, 0, 2, 9, 1, 9, 4, 3, 5, 9, 6, 4, 8, 2, 5, 7, 7, 5, 8, 5, 8, 9, 2, 8, 2, 8, 2, 4
Offset: 0
Examples
0.9962330018526478992272892600828036178741251594728980...
References
- L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).
Links
- Michael I. Shamos, Shamos's catalog of the real numbers (2011).
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[DirichletEta[8], 10, 100][[1]] (* Amiram Eldar, Aug 20 2021 *)
-
PARI
-polylog(8, -1) \\ Michel Marcus, Aug 20 2021
Formula
Equals (127/128) * zeta(8).
Equals 127 * Pi^8 / 1209600.
Equals Sum_{k>=1} (-1)^(k+1) / k^8.
Equals eta(8).