A347154 Sum of all divisors, except the largest of every number, of the first n positive even numbers.
1, 4, 10, 17, 25, 41, 51, 66, 87, 109, 123, 159, 175, 203, 245, 276, 296, 351, 373, 423, 477, 517, 543, 619, 662, 708, 774, 838, 870, 978, 1012, 1075, 1153, 1211, 1285, 1408, 1448, 1512, 1602, 1708, 1752, 1892, 1938, 2030, 2174, 2250, 2300, 2456, 2529, 2646, 2760
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
s[n_] := DivisorSigma[1, 2*n] - 2*n; Accumulate @ Array[s, 100] (* Amiram Eldar, Aug 20 2021 *)
-
PARI
a(n) = sum(k=1, n, k*=2; sigma(k)-k); \\ Michel Marcus, Aug 20 2021
-
Python
from sympy import divisors from itertools import accumulate def A346878(n): return sum(divisors(2*n)[:-1]) def aupton(nn): return list(accumulate(A346878(n) for n in range(1, nn+1))) print(aupton(51)) # Michael S. Branicky, Aug 20 2021
-
Python
from math import isqrt def A347154(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n*(n+1) # Chai Wah Wu, Nov 02 2023
Formula
a(n) = n + A346870(n).
a(n) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, May 15 2023
Comments