A347164 Positive integers k such that the decimal representation of 2^k ends with some permutation of the string "0123456789".
7386, 11061, 15176, 16054, 19950, 24493, 26749, 29160, 33902, 42207, 43013, 44233, 45627, 52235, 54727, 56186, 59228, 59229, 59230, 60883, 62823, 63468, 65404, 69960, 71225, 71804, 75176, 78392, 89416, 96576, 96682, 97723, 98085, 98561, 102735, 104125, 105301, 105760
Offset: 1
Examples
7386, 11061 and 15176 are in the sequence because the decimal representations of the corresponding powers of 2 end with 9815307264, 4706813952 and 0294875136, respectively.
Links
- Dimiter Skordev, Table of n, a(n) for n = 1..6000
Programs
-
Maple
q:= n-> (l-> is({l[], `if`(nops(l)<10, 0, [][])}= {$0..9}))(convert(2&^n mod 10^10, base, 10)): select(q, [$1..120000])[]; # Alois P. Heinz, Aug 23 2021
-
Mathematica
Select[Range[10^5],Union[If[Length[s=IntegerDigits@PowerMod[2,#,10^10]]==9,Join[{0},s],s]]==0~Range~9&] (* Giorgos Kalogeropoulos, Sep 03 2021 *)
-
PARI
isok(k) = my(d=digits(lift(Mod(2, 10^10)^k))); if (#d<10, d = concat(d, 0)); #Set(d) == 10; \\ Michel Marcus, Oct 01 2021
-
Python
k,r,n=1,2,1 while n<=6000: s,t=set(),r for i in range(10): s.add(t%10) t=t//10 if len(s)==10: print(n,k) n=n+1 k,r=k+1,2*r%10**10
Formula
a(n+c) = a(n) + d with c=2795 and d as above.
Comments