A347175 Sum of 4th powers of odd divisors of n that are <= sqrt(n).
1, 1, 1, 1, 1, 1, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 626, 1, 82, 1, 1, 707, 1, 1, 82, 1, 626, 82, 1, 1, 82, 626, 1, 82, 1, 1, 707, 1, 1, 82, 2402, 626, 82, 1, 1, 82, 626, 2402, 82, 1, 1, 707, 1, 1, 2483, 1, 626, 82, 1, 1, 82, 3027, 1, 82, 1, 1, 707
Offset: 1
Examples
a(18) = 82 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the sum of fourth powers of 1 and 3 then add them i.e., a(18) = 1^4 + 3^4 = 82. - _David A. Corneth_, Feb 24 2024
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[DivisorSum[n, #^4 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 75}] nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^4 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = { my(s = sqrtint(n), res); n>>=valuation(n, 2); d = divisors(n); for(i = 1, #d, if(d[i] <= s, res += d[i]^4 , return(res) ) ); res } \\ David A. Corneth, Feb 24 2024
Formula
G.f.: Sum_{k>=1} (2*k - 1)^4 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).